647
Views
48
CrossRef citations to date
0
Altmetric
Theme: Nanotechnology & Single-Cell Analysis - Review

Detection of miRNAs with a nanopore single-molecule counter

, , , &
Pages 573-584 | Published online: 09 Jan 2014

References

  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell136, 642–655 (2009).
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol.10, 126–139 (2009).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene LIN-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993).
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene LIN-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993).
  • Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res.39, D152–D157 (2011).
  • Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu. Rev. Med.60, 167–179 (2009).
  • Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060 (2004).
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev.18, 3016–3027 (2004).
  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science303, 95–98 (2004).
  • Chendrimada TP, Gregory RI, Kumaraswamy E et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005).
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell136, 215–233 (2009).
  • Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat. Genet.37, 495–500 (2005).
  • Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development (Cambridge)132, 4645–4652 (2005).
  • Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell. Biol.11, 252–263 (2010).
  • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Gen.10, 704–714 (2009).
  • Davalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr. Opin. Oncol.22, 35–45 (2010).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005).
  • Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol.27, 5848–5856 (2009).
  • Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002).
  • Calin GA, Ferracin M, Cimmino A et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008).
  • Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther.9, 703–711 (2009).
  • Zheng D, Haddadin S, Wang Y et al. Plasma micrornas as novel biomarkers for early detection of lung cancer. Int. J. Clin. Exp. Pathol.4, 575–586 (2011).
  • Boeri M, Verri C, Conte D et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl Acad. Sci. USA108, 3713–3718 (2011).
  • Hunt EA, Goulding AM, Deo SK. Direct detection and quantification of microRNAs. Anal. Biochem.387, 1–12 (2009).
  • Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev. Mol. Diagn.9(2), 187–197 (2009).
  • Yendamuri S, Kratzke R. MicroRNA biomarkers in lung cancer: MiRacle or quagMiRe? Transl. Res.157, 209–215 (2011).
  • Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res.33, e179 (2005).
  • Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001).
  • Ro S, Park C, Jin J, Sanders KM, Yan W. A PCR-based method for detection and quantification of small RNAs. Biochem. Biophys. Res. Commun.351, 756–763 (2006).
  • Hafner M, Renwick N, Brown M et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA17, 1697–1712 (2011).
  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–1281 (2003).
  • Reis PP, Waldron L, Goswami RS et al. MRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol.11, 46 (2011).
  • Jin G, Cid M, Poole CB, McReynolds LA. Protein mediated miRNA detection and siRNA enrichment using p19. BioTechniques48, xvii–xxiii (2010).
  • Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol.5, 807–814 (2010).
  • Neely LA, Patel S, Garver J et al. A single-molecule method for the quantitation of microRNA gene expression. Nat. Methods3, 41–46 (2006).
  • Nielsen BS MicroRNA in situ hybridization. Methods Mol. Biol.822, 67–84 (2012).
  • Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods3, 27–29 (2006).
  • Nuovo GJ. In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods44, 39–46 (2008).
  • Nuovo GJ. In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods52, 307–315 (2010).
  • Jorgensen S, Baker A, Moller S, Nielsen BS. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods52, 375–381 (2010).
  • Pena JT, Sohn-Lee C, Rouhanifard SH et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat. Methods6, 139–141 (2009).
  • Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol.6, 668–674 (2011).
  • Bayley H, Jayasinghe L. Functional engineered channels and pores (review). Mol. Membr. Biol.21, 209–220 (2004).
  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA93, 13770–13773 (1996).
  • Howorka S, Siwy Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev.38, 2360–2384 (2009).
  • Gu LQ, Shim JW. Single molecule sensing by nanopores and nanopore devices. Analyst135, 441–451 (2010).
  • Ma L, Cockroft SL. Biological nanopores for single-molecule biophysics. Chembiochem.11, 25–34 (2010).
  • Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol.21, 439–476 (2010).
  • Movileanu L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol.27, 333–341 (2009).
  • Olasagasti F, Lieberman KR, Benner S et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol.5, 798–806 (2010).
  • Liu A, Zhao Q, Guan X. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal. Chim. Acta675, 106–115 (2010).
  • Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol.6, 615–624 (2011).
  • Bayley H. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol.10, 628–637 (2006).
  • Branton D, Deamer DW, Marziali A et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol.26, 1146–1153 (2008).
  • Vargason JM, Szittya G, Burgyan J, Hall TM. Size selective recognition of siRNA by an RNA silencing suppressor. Cell115, 799–811 (2003).
  • Song LZ, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science274, 1859–1866 (1996).
  • Meller A, Nivon L, Branton D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett.86, 3435–3438 (2001).
  • Mitchell N, Howorka S. Chemical tags facilitate the sensing of individual DNA strands with nanopores. Angew. Chem. Int. Ed.47, 5565–5568 (2008).
  • Meller A, Nivon L, Brandin E, Golovchenko J, Branton D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA97, 1079–1084 (2000).
  • Mathé J, Aksimentiev A, Nelson DR, Schulten K, Meller A. Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl Acad. Sci. USA102, 12377–12382 (2005).
  • Purnell RF, Mehta KK, Schmidt JJ. Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano. Lett.8, 3029–3034 (2008).
  • Maglia G, Restrepo MR, Mikhailova E, Bayley H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl Acad. Sci. USA105, 19720–19725 (2008).
  • Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol.5, 160–165 (2010).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6, 857–866 (2006).
  • Ortholan C, Puissegur MP, Ilie M, Barbry P, Mari B, Hofman P. MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr. Med. Chem.16, 1047–1061 (2009).
  • Li W, Ruan K. MicroRNA detection by microarray. Anal. Bioanal. Chem.394, 1117–1124 (2009).
  • Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol.19, 636–639 (2001).
  • Nakane J, Wiggin M, Marziali A. A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J.87, 615–621 (2004).
  • Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett.90(23), 238101 (2003).
  • Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotechnol.19, 248–252 (2001).
  • Cho WC. Role of miRNAs in lung cancer. Expert Rev. Mol. Diagn.9(8), 773–776 (2009).
  • Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem.285(23), 17442–17452 (2010).
  • Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer10, 42–46 (2009).
  • Rosell R, Wei J, Taron M. Circulating MicroRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin. Lung Cancer10, 8–9 (2009).
  • Donnem T, Eklo K, Berg T et al. Prognostic impact of miR-155 in non-small cell lung cancer evaluated by in situ hybridization. J. Transl. Med.9, 6 (2011).
  • Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res.70, 36–45 (2010).
  • Yanaihara N, Caplen N, Bowman E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9, 189–198 (2006).
  • McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett.10, 2237–2244 (2010).
  • Singer A, Wanunu M, Morrison W, Kuhn H, Frank-Kamenetskii M, Meller A. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett.10, 738–742 (2010).
  • Jeon TJ, Malmstadt N, Schmidt JJ. Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc.128, 42–43 (2006).
  • Shim JW, Gu LQ. Stochastic sensing on a modular chip containing a single-ion channel. Anal. Chem.79, 2207–2213 (2007).
  • Kang XF, Cheley S, Rice-Ficht AC, Bayley H. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc.129, 4701–4705 (2007).
  • White RJ, Ervin EN, Yang T et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc.129, 11766–11775 (2007).
  • Cornell BA, Braach-Maksvytis VLB, King LG et al. A biosensor that uses ion-channel switches. Nature387, 580–583 (1997).
  • Baaken G, Sondermann M, Schlemmer C, Rühe J, Behrends JC. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip8, 938–944 (2008).
  • Bayley H, Cronin B, Heron A et al. Droplet interface bilayers. Mol. Biosyst.4, 1191–1208 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.