294
Views
29
CrossRef citations to date
0
Altmetric
Review

Quantum dot-based nanosensors for diagnosis via enzyme activity measurement

, &
Pages 367-375 | Published online: 09 Jan 2014

References

  • Postma C, Koopman M, Buffart TE et al. DNA copy number profiles of primary tumors as predictors of response to chemotherapy in advanced colorectal cancer. Ann. Oncol. 20(6), 1048–1056 (2009).
  • Seo EH, Kang J, Kim KH et al. Detection of expressed IL-32 in human stomach cancer using ELISA and immunostaining. J. Microbiol. Biotechnol. 18(9), 1606–1612 (2008).
  • Rogerson TE, Chen S, Kok J et al. Tests for latent tuberculosis in people with ESRD: a systematic review. Am. J. Kidney Dis. 61(1), 33–43 (2013).
  • Skrzypski M. Quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR) in translational oncology: lung cancer perspective. Lung Cancer 59(2), 147–154 (2008).
  • McNurlan MA. New perspectives in the control of body protein metabolism. Br. J. Nutr. 108(Suppl. 2), S94–S104 (2012).
  • Larsson O, Tian B, Sonenberg N. Toward a genome-wide landscape of translational control. Cold Spring Harb. Perspect. Biol. 5(1), a012302 (2013).
  • Chiarugi P, Buricchi F. Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid. Redox Signal. 9(1), 1–24 (2007).
  • Bandyopadhyay K, Li P, Gjerset RA. CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS ONE 7(11), e50427 (2012).
  • Komander D, Rape M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
  • Interthal H, Chen HJ, Kehl-Fie TE, Zotzmann J, Leppard JB, Champoux JJ. SCAN1 mutant Tdp1 accumulates the enzyme–DNA intermediate and causes camptothecin hypersensitivity. EMBO J. 24(12), 2224–2233 (2005).
  • Begg CB, Haile RW, Borg A et al. Variation of breast cancer risk among BRCA1/2 carriers. JAMA 299(2), 194–201 (2008).
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 253(5015), 49–53 (1991).
  • Juul S, Ho YP, Koch J et al. Detection of single enzymatic events in rare or single cells using microfluidics. ACS Nano 5(10), 8305–8310 (2011).
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40(22), 4128–4158 (2001).
  • Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7(5), 609–615 (2003).
  • Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004).
  • Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998).
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996).
  • Nirmal M, Brus L. Luminescence photophysics in semiconductor nanocrystals. Accounts Chem. Res. 32(5), 407–414 (1999).
  • Norris DJ, Bawendi MG. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B Condens. Matter 53(24), 16338–16346 (1996).
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5(9), 763–775 (2008).
  • Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006).
  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998).
  • Lakowicz JR. Principles of Fluorescence Spectroscopy. Springer, Berlin, Germany, (1999).
  • Förster T. Intermolecular energy transference and fluorescence. Ann. Phys. 2, 55 (1948).
  • Clapp AR, Medintz IL, Mattoussi H. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7(1), 47–57 (2006).
  • Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 673(1), 1–25 (2010).
  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2(9), 630–638 (2003).
  • Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
  • Pardo-Yissar V, Katz E, Wasserman J, Willner I. Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors. J. Am. Chem. Soc. 125(3), 622–623 (2003).
  • Boeneman K, Mei BC, Dennis AM et al. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J. Am. Chem. Soc. 131(11), 3828–3829 (2009).
  • Medintz IL, Clapp AR, Brunel FM et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater. 5(7), 581–589 (2006).
  • Gill R, Freeman R, Xu JP et al. Probing biocatalytic transformations with CdSe–ZnS QDs. J. Am. Chem. Soc. 128(48), 15376–15377 (2006).
  • Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 128(32), 10378–10379 (2006).
  • Chang E, Miller JS, Sun J et al. Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334(4), 1317–1321 (2005).
  • Shi L, Rosenzweig N, Rosenzweig Z. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal. Chem. 79(1), 208–214 (2007).
  • Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc. 125(46), 13918–13919 (2003).
  • So MK, Loening AM, Gambhir SS, Rao J. Creating self-illuminating quantum dot conjugates. Nat. Protoc. 1(3), 1160–1164 (2006).
  • So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24(3), 339–343 (2006).
  • Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. Engl. 46(23), 4346–4349 (2007).
  • Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal. Chem. 80(12), 4634–4641 (2008).
  • Lowe SB, Dick JA, Cohen BE, Stevens MM. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates. ACS Nano 6(1), 851–857 (2012).
  • Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal. Chem. 84(22), 10136–10146 (2012).
  • Algar WR, Wegner D, Huston AL et al. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. J. Am. Chem. Soc. 134(3), 1876–1891 (2012).
  • Algar WR, Ancona MG, Malanoski AP, Susumu K, Medintz IL. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. ACS Nano 6(12), 11044–11058 (2012).
  • Wang X, Ramstro MO, Yan M. Quantitative analysis of multivalent ligand presentation on gold glyconanoparticles and the impact on lectin binding. Anal. Chem. doi:10.1021/ac102114z (2010) (Epub ahead of print).
  • Liu L, Xu K, Wang H et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 4(7), 457–463 (2009).
  • Algar WR, Malonoski A, Deschamps JR et al. Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial ‘hopping’. Nano Lett. 12(7), 3793–3802 (2012).
  • Long Y, Zhang LF, Zhang Y, Zhang CY. Single quantum dot based nanosensor for renin assay. Anal. Chem. 84(20), 8846–8852 (2012).
  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6), 435–446 (2005).
  • Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Transact. A. Math. Phys. Eng. Sci. 368(1915), 1333–1383 (2010).
  • Suzuki M, Husimi Y, Komatsu H, Suzuki K, Douglas KT. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J. Am. Chem. Soc. 130(17), 5720–5725 (2008).
  • Yuan J, Wen D, Gaponik N, Eychmüller A. Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew. Chem. Int. Ed. Engl. 52(3), 976–979 (2013).
  • De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 64(11), 967–978 (2012).
  • Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale 2(1), 60–68 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.