296
Views
23
CrossRef citations to date
0
Altmetric
Theme: Cancer/Oncology Diagnostics - Review

The role of high-throughput technologies in clinical cancer genomics

, , , &
Pages 167-181 | Published online: 09 Jan 2014

References

  • Hochhaus A, Druker B, Sawyers C et al. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood 111(3), 1039–1043 (2008).
  • Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11(10), 685–696 (2010).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218), 66–72 (2008).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361(11), 1058–1066 (2009).
  • Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278), 191–196 (2010).
  • Pao W, Miller V, Zakowski M et al. EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101(36), 13306–13311 (2004).
  • Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748), 644–648 (2005).
  • Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448(7153), 561–566 (2007).
  • Lapunzina P, Monk D. The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol. Cell 103(7), 303–317 (2011).
  • Wong DW, Leung EL, So KK et al.; University of Hong Kong Lung Cancer Study Group. The EML4–ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8), 1723–1733 (2009).
  • Kallioniemi A, Kallioniemi OP, Sudar D et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083), 818–821 (1992).
  • Chen X, Knauf JA, Gonsky R et al. From amplification to gene in thyroid cancer: a high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization. Am. J. Hum. Genet. 63(2), 625–637 (1998).
  • Pinkel D, Segraves R, Sudar D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20(2), 207–211 (1998).
  • Wicker N, Carles A, Mills IG et al. A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH. BMC Genomics 8, 84 (2007).
  • Carvalho B, Ouwerkerk E, Meijer GA, Ylstra B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57(6), 644–646 (2004).
  • Le Scouarnec S, Gribble SM. Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb.) 108(1), 75–85 (2012).
  • Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br. J. Haematol. 146(5), 479–488 (2009).
  • LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 37(13), 4181–4193 (2009).
  • Peiffer DA, Le JM, Steemers FJ et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 16(9), 1136–1148 (2006).
  • Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4), 557–572 (2004).
  • Campbell PJ, Stephens PJ, Pleasance ED et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40(6), 722–729 (2008).
  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 291(5507), 1304–1351 (2001).
  • Metzker ML. Sequencing technologies – the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010).
  • Margulies M, Egholm M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057), 376–380 (2005).
  • Wheeler DA, Srinivasan M, Egholm M et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189), 872–876 (2008).
  • Pleasance ED, Stephens PJ, O’Meara S et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278), 184–190 (2010).
  • Bentley DR, Balasubramanian S, Swerdlow HP et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218), 53–59 (2008).
  • Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 12(8), 125 (2011).
  • Loman NJ, Misra RV, Dallman TJ et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30(5), 434–439 (2012).
  • Bell CJ, Dinwiddie DL, Miller NA et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3(65), 65ra4 (2011).
  • King MC, Marks JH, Mandell JB; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645), 643–646 (2003).
  • Alsop K, Fereday S, Meldrum C et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 30(21), 2654–2663 (2012).
  • Walsh T, Lee MK, Casadei S et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Natl Acad. Sci. USA 107(28), 12629–12633 (2010).
  • Tagawa H, Suguro M, Tsuzuki S et al. Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood 106(5), 1770–1777 (2005).
  • Seto M. Genomic profiles in B cell lymphoma. Int. J. Hematol. 92(2), 238–245 (2010).
  • Takeuchi I, Tagawa H, Tsujikawa A et al. The potential of copy number gains and losses, detected by array-based comparative genomic hybridization, for computational differential diagnosis of B-cell lymphomas and genetic regions involved in lymphomagenesis. Haematologica 94(1), 61–69 (2009).
  • Sehn LH. Early detection of patients with poor risk diffuse large B-cell lymphoma. Leuk. Lymphoma 50(11), 1744–1747 (2009).
  • Robledo C, García JL, Caballero D et al.; Spanish Lymphoma/Autologous Bone Marrow Transplant Study Group (GEL-TAMO). Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer 115(16), 3728–3737 (2009).
  • Kreisel F, Kulkarni S, Kerns RT et al. High resolution array comparative genomic hybridization identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy. Cancer Genet. 204(3), 129–137 (2011).
  • Barrans S, Crouch S, Smith A et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J. Clin. Oncol. 28(20), 3360–3365 (2010).
  • Hagenkord JM, Monzon FA, Kash SF, Lilleberg S, Xie Q, Kant JA. Array-based karyotyping for prognostic assessment in chronic lymphocytic leukemia: performance comparison of Affymetrix 10K2.0, 250K Nsp, and SNP6.0 arrays. J. Mol. Diagn. 12(2), 184–196 (2010).
  • Tyybäkinoja A, Elonen E, Piippo K, Porkka K, Knuutila S. Oligonucleotide array-CGH reveals cryptic gene copy number alterations in karyotypically normal acute myeloid leukemia. Leukemia 21(3), 571–574 (2007).
  • O’Keefe CL, Tiu R, Gondek LP et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp. Hematol. 35(2), 240–251 (2007).
  • Starczynowski DT, Vercauteren S, Telenius A et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 112(8), 3412–3424 (2008).
  • Tiu RV, Gondek LP, O’Keefe CL et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J. Clin. Oncol. 27(31), 5219–5226 (2009).
  • Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111(3), 1534–1542 (2008).
  • Tiu RV, Gondek LP, O’Keefe CL et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117(17), 4552–4560 (2011).
  • Makishima H, Rataul M, Gondek LP et al. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk. Res. 34(4), 447–453 (2010).
  • Welch JS, Westervelt P, Ding L et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 305(15), 1577–1584 (2011).
  • Massard C, Loriot Y, Fizazi K. Carcinomas of an unknown primary origin – diagnosis and treatment. Nat. Rev. Clin. Oncol. 8(12), 701–710 (2011).
  • Evers B, Drost R, Schut E et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14(12), 3916–3925 (2008).
  • Shaw AT, Yeap BY, Solomon BJ et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12(11), 1004–1012 (2011).
  • Lièvre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66(8), 3992–3995 (2006).
  • Molinari F, Frattini M. KRAS mutational test for metastatic colorectal cancer patients: not just a technical problem. Expert Rev. Mol. Diagn. 12(2), 123–126 (2012).
  • Pirker R, Herth FJ, Kerr KM et al.; European EGFR Workshop Group. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J. Thorac. Oncol. 5(10), 1706–1713 (2010).
  • Lipson D, Capelletti M, Yelensky R et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18(3), 382–384 (2012).
  • Beroukhim R, Mermel CH, Porter D et al. The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899–905 (2010).
  • Sequist LV, Heist RS, Shaw AT et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 22(12), 2616–2624 (2011).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 417(6892), 949–954 (2002).
  • Sosman JA, Kim KB, Schuchter L et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366(8), 707–714 (2012).
  • Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem. Pharmacol. 82(3), 201–209 (2011).
  • Nazarian R, Shi H, Wang Q et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326), 973–977 (2010).
  • Wagle N, Emery C, Berger MF et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29(22), 3085–3096 (2011).
  • West C, Rosenstein BS, Alsner J et al.; EQUAL-ESTRO. Establishment of a Radiogenomics Consortium. Int. J. Radiat. Oncol. Biol. Phys. 76(5), 1295–1296 (2010).
  • Barnett GC, Coles CE, Elliott RM et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 13(1), 65–77 (2012).
  • Roychowdhury S, Iyer MK, Robinson DR et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3(111), 111ra121 (2011).
  • Leary RJ, Kinde I, Diehl F et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2(20), 20ra14 (2010).
  • Xiang B, Zhu H, Shen Y et al. Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: a multicenter experience of 1499 clinical cases. J. Mol. Diagn. 12(2), 204–212 (2010).
  • Lichtenbelt KD, Knoers NV, Schuring-Blom GH. From karyotyping to array-CGH in prenatal diagnosis. Cytogenet. Genome Res. 135(3–4), 241–250 (2011).
  • Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet. Genome Res. 115(3-4), 303–309 (2006).
  • Van Loo P, Nordgard SH, Lingjærde OC et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107(39), 16910–16915 (2010).
  • Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 13(7), 680–685 (2011).
  • Krijgsman O, Israeli D, Haan JC et al. CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes. Chromosomes Cancer 51(4), 344–352 (2012).
  • Pinto D, Darvishi K, Shi X et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 29(6), 512–520 (2011).
  • Curtis C, Lynch AG, Dunning MJ et al. The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10, 588 (2009).
  • Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am. J. Clin. Pathol. 136(4), 527–539 (2011).
  • Bainbridge MN, Wang M, Burgess DL et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11(6), R62 (2010).
  • Albert TJ, Molla MN, Muzny DM et al. Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4(11), 903–905 (2007).
  • Mamanova L, Coffey AJ, Scott CE et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7(2), 111–118 (2010).
  • Morgan JE, Carr IM, Sheridan E et al. Genetic diagnosis of familial breast cancer using clonal sequencing. Hum. Mutat. 31(4), 484–491 (2010).
  • Forshew T, Murtaza M, Parkinson C et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4(136), 136ra68 (2012).
  • Forbes SA, Bhamra G, Bamford S et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet. 10, Unit 10.11 (2008).
  • Poplawski AB, Jankowski M, Erickson SW et al. Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. Eur. J. Hum. Genet. 18(5), 560–568 (2010).
  • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12(5), 323–334 (2012).
  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 31(1), 27–36 (2010).
  • Kwee I, Rinaldi A, Rancoita P et al. Integrated DNA copy number and methylation profiling of lymphoid neoplasms using a single array. Br. J. Haematol. 156(3), 354–357 (2012).
  • Chang H, Jackson DG, Kayne PS, Ross-Macdonald PB, Ryseck RP, Siemers NO. Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines. PLoS ONE 6(6), e21097 (2011).
  • Harris SR, Cartwright EJ, Török ME et al. Whole-genome sequencing for analysis of an outbreak of methicillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect. Dis. 13(2), 130–136 (2013).
  • Desai AN, Jere A. Next-generation sequencing: ready for the clinics? Clin. Genet. 81(6), 503–510 (2012).
  • Hastings R, de Wert G, Fowler B et al. The changing landscape of genetic testing and its impact on clinical and laboratory services and research in Europe. Eur. J. Hum. Genet. 20(9), 911–916 (2012).
  • Ong FS, Grody WW, Deignan JL. Privacy and data management in the era of massively parallel next-generation sequencing. Expert Rev. Mol. Diagn. 11(5), 457–459 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.