538
Views
96
CrossRef citations to date
0
Altmetric
Review

Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors

, , , , , , , , , , , , , & show all
Pages 1413-1431 | Published online: 09 Jan 2014

References

  • Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol.4(8), 487–499 (2005).
  • Tzourio C, Dufouil C, Ducimetiere P, Alperovitch A. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA study group: epidemiology of vascular aging. Neurology53(9), 1948–1952 (1999).
  • in’t Veld BA, Ruitenberg A, Hofman A, Stricker BH, Breteler MM. Antihypertensive drugs and incidence of dementia: the Rotterdam study. Neurobiol. Aging22(3), 407–412 (2001).
  • Yasar S, Corrada M, Brookmeyer R, Kawas C. Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol. Aging26(2), 157–163 (2005).
  • Qiu C, Winblad B, Fastbom J, Fratiglioni L. Combined effects of APOE genotype, blood pressure, and antihypertensive drug use on incident AD. Neurology61(5), 655–660 (2003).
  • Ohrui T, Matsui T, Yamaya M et al. Angiotensin-converting enzyme inhibitors and incidence of Alzheimer’s disease in Japan. J. Am. Geriatr. Soc.52(4), 649–650 (2004).
  • Khachaturian AS, Zandi PP, Lyketsos CG et al. Antihypertensive medication use and incident Alzheimer disease: the cache county study. Arch. Neurol.63(5), 686–692 (2006).
  • McCabe RD, Bakarich MA, Srivastava K, Young DB. Potassium inhibits free radical formation. Hypertension24(1), 77–82 (1994).
  • He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet367(9507), 320–326 (2006).
  • Hanon O, Berrou JP, Negre-Pages L et al. Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the observational study on cognitive function and systolic blood pressure reduction open-label study. J. Hypertens.26(8), 1642–1650 (2008).
  • Haag MD, Hofman A, Koudstaal PJ, Breteler MM, Stricker BH. Duration of antihypertensive drug use and risk of dementia: a prospective cohort study. Neurology72(20), 1727–1734 (2009).
  • Amenta F, Mignini F, Rabbia F, Tomassoni D, Veglio F. Protective effect of anti-hypertensive treatment on cognitive function in essential hypertension: analysis of published clinical data. J. Neurol. Sci.203–204, 147–151 (2002).
  • Richards SS, Emsley CL, Roberts J et al. The association between vascular risk factor-mediating medications and cognition and dementia diagnosis in a community-based sample of African–Americans. J. Am. Geriatr. Soc.48(9), 1035–1041 (2000).
  • Ohrui T, Tomita N, Sato-Nakagawa T et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology63(7), 1324–1325 (2004).
  • Peters R, Beckett N, Forette F et al. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG), a double-blind, placebo controlled trial. Lancet Neurol.7(8), 683–689 (2008).
  • SHEP cooperative research group: prevention of stroke by antihypertensive drug treatment in older patients with isolated systolic hypertension in the elderly program (SHEP). JAMA265, 3255–3264 (1991).
  • Forette F, Seux ML, Staessen JA et al. Prevention of dementia in randomised double-blind placebo-controlled systolic hypertension in Europe (Syst-Eur) trial. Lancet352, 1347–1351 (1998).
  • Forette F, Seux ML, Staessen JA et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern. Med.162(18), 2046–2052 (2002).
  • Skoog I, Lithell H, Hansson L et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on Cognition and Prognosis in the Elderly (SCOPE). Am. J. Hypertens.18(8), 1052–1059 (2005).
  • Yusuf S, Diener HC, Sacco RL et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N. Engl. J. Med.359(12), 1225–1237 (2008).
  • Anderson C. Role of the renein–angiotensin system for stroke prevention. Presented at: European Stroke Conference. Nice, Italy, 15 May 2008.
  • Schrader J, Luders S, Kulschewski A et al. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke36(6), 1218–1226 (2005).
  • Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet362(9395), 1527–1535 (2003).
  • Diener HC, Sacco RL, Yusuf S et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the prevention regimen for effectively avoiding second strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. Lancet Neurol.7(10), 875–884 (2008).
  • Irie K, Yamaguchi T, Minematsu K, Omae T. The J-curve phenomenon in stroke recurrence. Stroke24(12), 1844–1849 (1993).
  • Muller M, van der Vlek AL, Visseren FA et al. The combined effect of low blood pressure and cerebral hypoperfusion on brain atrophy; the SMART-MR study. Program of Abstracts of the 4th Congress of the International Society for Vascular Behavioural and Cognitive Disorders. Suntec City, Singapore, 14–16 January 2009 (Abstract O-24).
  • Lippa CF, Duda JE, Grossman M et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology68(11), 812–819 (2007).
  • Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke29(3), 705–718 (1998).
  • Khachaturian ZS. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann. NY Acad. Sci.747, 1–11 (1994).
  • Guo Q, Christakos S, Robinson N, Mattson MP. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl Acad. Sci. USA95(6), 3227–3232 (1998).
  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci.12(2), 376–389 (1992).
  • Iwasaki K, Egashira N, Takagaki Y et al. Nilvadipine prevents the impairment of spatial memory induced by cerebral ischemia combined with β-amyloid in rats. Biol. Pharm. Bull.30(4), 698–701 (2007).
  • Oprisiu-Fournier R, Faure S, Mazouz H et al. Angiotensin AT1-receptor blockers and cerebrovascular protection: do they actually have a cutting edge on angiotensin-converting enzyme inhibitors ? Expert Rev. Neurother.9(9), 1289–1305 (2009).
  • Hu J, Igarashi A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem.276(51), 47863–47868 (2001).
  • Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem.280(45), 37644–37650 (2005).
  • Zou K, Yamaguchi H, Akatsu H et al. Angiotensin-converting enzyme converts amyloid β-protein 1–42 (Aβ(1–42)) to Aβ(1–40), and its inhibition enhances brain Ab deposition. J. Neurosci.27(32), 8628–8635 (2007).
  • Hemming ML, Selkoe DJ, Farris W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis.26(1), 273–281 (2007).
  • Eckman EA, Adams SK, Troendle FJ et al. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem.281(41), 30471–30478 (2006).
  • Wang J, Ho L, Chen L et al. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest.117(11), 3393–3402 (2007).
  • Jenkins TA, Chai SY. Effect of chronic angiotensin converting enzyme inhibition on spatial memory and anxiety-like behaviours in rats. Neurobiol. Learn. Mem.87(2), 218–224 (2007).
  • Srinivasan J, Jayadev S, Kumaran D, Ahamed KF, Suresh B, Ramanathan M. Effect of losartan and enalapril on cognitive deficit caused by Goldblatt induced hypertension. Indian J. Exp. Biol.43(3), 241–246 (2005).
  • Raghavendra V, Chopra K, Kulkarni SK. Comparative studies on the memory-enhancing actions of captopril and losartan in mice using inhibitory shock avoidance paradigm. Neuropeptides35(1), 65–69 (2001).
  • Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol.100(1), 328–335 (2006).
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev.43(2), 109–142 (1991).
  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ. Angiotensin II inhibits the release of [3H] acetylcholine from rat entorhinal cortex in vitro. Brain Res.491(1), 136–143 (1989).
  • Grammatopoulos TN, Jones SM, Ahmadi FA et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol. Neurodegener.2, 1 (2007).
  • Stragier B, Sarre S, Vanderheyden P et al. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J. Neurochem.90(5), 1251–1257 (2004).
  • Faure S, Oudart N, Javellaud J, Fournier A, Warnock DG, Achard JM. Synergistic protective effects of erythropoietin and olmesartan on ischemic stroke survival and post-stroke memory dysfunctions in the gerbil. J. Hypertens.24(11), 2255–2261 (2006).
  • Braszko JJ. AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav. Brain Res.131(1–2), 79–86 (2002).
  • Braszko JJ. Valsartan abolishes most of the memory-improving effects of intracerebroventricular angiotensin II in rats. Clin. Exp. Hypertens27(8), 635–649 (2005).
  • Richards EM, Raizada MK, Gelband CH, Sumners C. Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Mol. Neurobiol.19(1), 25–41 (1999).
  • Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br. J. Pharmacol.118(2), 414–420 (1996).
  • Tsukuda K, Mogi M, Li JM et al. Amelioration of cognitive impairment in the Type-2 diabetic mouse by the angiotensin II type-1 receptor blocker candesartan. Hypertension50(6), 1099–1105 (2007).
  • Mogi M, Li JM, Iwanami J et al. Angiotensin II type-2 receptor stimulation prevents neural damage by transcriptional activation of methyl methanesulfonate sensitive 2. Hypertension48(1), 141–148 (2006).
  • Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K. Angiotensin II-(3–8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats. Neuroscience27(3), 777–783 (1988).
  • Braszko JJ, Walesiuk A, Wielgat P. Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV. J. Renin Angiotensin Aldosterone Syst.7(3), 168–174 (2006).
  • Stragier B, De Bundel D, Sarre S et al. Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review. Heart Fail. Rev.13(3), 321–337 (2007).
  • Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog. Neurobiol.84(2), 157–181 (2008).
  • Wright JW, Harding JW. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J. Renin Angiotensin Aldosterone Syst.9(4), 226–237 (2008).
  • Albiston AL, Mc Dowall SG, Matsacos D et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem.276, 48623–48626 (2001).
  • Ragozzino ME, Unick KE, Gold PE. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc. Natl Acad. Sci. USA93(10), 4693–4698 (1996).
  • Kopf SR, Buchholzer ML, Hilgert M, Loffelholz K, Klein J. Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience103(2), 365–371 (2001).
  • Dash PK, Orsi SA, Moore AN. Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-mammalian target of rapamycin pathway. J. Neurosci.26(31), 8048–8056 (2006).
  • Akimoto M, Baba A, Ikeda-Matsuo Y et al. Hepatocyte growth factor as an enhancer of NMDA currents and synaptic plasticity in the hippocampus. Neuroscience128(1), 155–162 (2004).
  • Date I, Takagi N, Takagi K et al. Hepatocyte growth factor attenuates cerebral ischemia-induced learning dysfunction. Biochem. Biophys. Res. Commun.319(4), 1152–1158 (2004).
  • Shimamura M, Sato N, Waguri S et al. Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction. Hypertension47(4), 742–751 (2006).
  • Mogi M, Li JM, Tsukuda K et al. Telmisartan prevented cognitive decline partly due to PPAR-γ activation. Biochem. Biophys. Res. Commun.375(3), 446–449 (2008).
  • Kehoe PG, Wilcock GK. Is inhibition of the renin–angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol.6(4), 373–378 (2007).
  • Lehmann DJ, Cortina-Borja M, Warden DR et al. Large meta-analysis establishes the ACE insertion–deletion polymorphism as a marker of Alzheimer’s disease. Am. J. Epidemiol.162(4), 305–317 (2005).
  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest.86(4), 1343–1346 (1990).
  • Hamshere ML, Holmans PA, Avramopoulos D et al. Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer’s disease. Hum. Mol. Genet.16(22), 2703–2712 (2007).
  • Hoffman LB, Schmeidler J, Lesser GT et al. Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology72(20), 1720–1726 (2009).
  • Prediger RD, Medeiros R, Pandolfo P et al. Genetic deletion or antagonism of kinin B(1) and B(2) receptors improves cognitive deficits in a mouse model of Alzheimer’s disease. Neuroscience151(3), 631–643 (2008).
  • Beckett NS, Peters R, Fletcher AE et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med.358(18), 1887–1898 (2008).
  • Vellas B, Andrieu S, Sampaio C, Wilcock G. Disease-modifying trials in Alzheimer’s disease: a European task force consensus. Lancet Neurol.6(1), 56–62 (2007).
  • Jamerson K, Weber MA, Bakris GL et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N. Engl. J. Med.359(23), 2417–2428 (2008).
  • Rafii MS, Aisen PS. Recent developments in Alzheimer’s disease therapeutics. BMC Med.7, 7 (2009).
  • Doody RS, Gavrilova SI, Sano M et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet372(9634), 207–215 (2008).
  • Holmes C, Boche D, Wilkinson D et al. Long-term effects of Aβ42 immunization in Alzheimer’s disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet372(9634), 216–223 (2008).
  • Tedesco MA, Ratti G, Mennella S et al.Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am. J. Hypertens.12, 1130–1134 (1999).
  • Fogari R, Mugellini A, Zoppi A et al. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J. Hum. Hypertens.17, 781–785 (2003).
  • Fogari R, Mugellini A, Zoppi A et al. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur. J. Clin. Pharmacol.59, 863–868 (2004).
  • Peters R, Beckett N, Forette F et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol.7(8), 683–689 (2008).
  • Tzourio C, Anderson C, Chapman N et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med.163, 1069–1075 (2003).
  • Fransen M, Anderson C, Chalmers J et al. Effects of a perindopril-based blood pressure-lowering regimen on disability and dependency in 6105 patients with cerebrovascular disease: a randomized controlled trial. Stroke34, 2333–2338 (2003).
  • Levy BI, Benessiano J, Henrion D et al. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J. Clin. Invest.98(2), 418–425 (1996).
  • Haulica I, Bild W, Serban DN. Angiotensin peptides and their pleiotropic actions. J. Renin Angiotensin Aldosterone Syst.6, 121–131 (2005).
  • Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol. Sci.23, 177–183 (2002).
  • Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA, Simoes e Silva AC. The renin–angiotensin system and diabetes: an update. Vasc. Health Risk Manag.4, 787–803 (2008).
  • Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog. Neurobiol.84, 157–181 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.