486
Views
133
CrossRef citations to date
0
Altmetric
Review

Convection-enhanced delivery for the treatment of brain tumors

&
Pages 1519-1527 | Published online: 09 Jan 2014

References

  • Pardridge WM. Blood–brain barrier delivery. Drug Discov. Today12(1–2), 54–61 (2007).
  • Debinski W. Local treatment of brain tumors with targeted chimera cytotoxic proteins. Cancer Invest.20(5–6), 801–809 (2002).
  • Groothuis DR. The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol.2(1), 45–59 (2000).
  • Vogelbaum MA. Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J. Neurooncol.83(1), 97–109 (2007).
  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA91(6), 2076–2080 (1994).
  • Song DK, Lonser RR. Convection-enhanced delivery for the treatment of pediatric neurologic disorders. J. Child Neurol.23(10), 1231–1237 (2008).
  • Vogelbaum MA, Sampson JH, Kunwar S et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: Phase 1 study of final safety results. Neurosurgery61(5), 1031–1037 (2007).
  • Mut M, Sherman JH, Shaffrey ME, Schiff D. Cintredekin besudotox in treatment of malignant glioma. Expert Opin. Biol. Ther.8(6), 805–812 (2008).
  • Sampson JH, Akabani G, Archer GE et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neurooncol.10(3), 320–329 (2008).
  • Ferguson S, Lesniak MS. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr. Drug Deliv.4(2), 169–180 (2007).
  • Sampson JH, Raghavan R, Brady ML et al. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neurooncol.9(3), 343–353 (2007).
  • Slevin JT, Gash DM, Smith CD et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J. Neurosurg.106(4), 614–620 (2007).
  • Kunwar S, Prados MD, Chang SM et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J. Clin. Oncol.25(7), 837–844 (2007).
  • Murad GJ, Walbridge S, Morrison PF et al. Real-time, image-guided, convection-enhanced delivery of interleukin-13 bound to Pseudomonas exotoxin. Clin. Cancer Res.12(10), 3145–3151 (2006).
  • Shapiro WR, Carpenter SP, Roberts K, Shan JS. (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin. Biol. Ther.6(5), 539–545 (2006).
  • Carpentier A, Laigle-Donadey F, Zohar S et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol.8(1), 60–66 (2006).
  • Lonser RR, Walbridge S, Murray GJ et al. Convection perfusion of glucocerebrosidase for neuronopathic Gaucher’s disease. Ann. Neurol.57(4), 542–548 (2005).
  • Lidar Z, Mardor Y, Jonas T et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. J. Neurosurg.100(3), 472–479 (2004).
  • Weber F, Asher A, Bucholz R et al. Safety, tolerability, and tumor response of IL-4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J. Neurooncol.64(1–2), 125–137 (2003).
  • Broaddus WC, Gillies GT, Kucharczyk J. Minimally invasive procedures. Advances in image-guided delivery of drug and cell therapies into the central nervous system. Neuroimaging Clin. N. Am.11(4), 727–735 (2001).
  • Wersall P, Ohlsson I, Biberfeld P et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol. Immunother.44, 157–164 (1997).
  • Mack WJ, Huang J, Winfree C et al. Ultrarapid, convection-enhanced intravascular hypothermia: a feasibility study in nonhuman primate stroke. Stroke34(8), 1994–1999 (2003).
  • Rousseau J, Boudou C, Estève F, Elleaume H. Convection-enhanced delivery of an iodine tracer into rat brain for synchrotron stereotactic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.68(3), 943–951 (2007).
  • Gasior M, White NA, Rogawski MA. Prolonged attenuation of amygdala-kindled seizure measures in rats by convection-enhanced delivery of the N-type calcium channel antagonists omega-conotoxin GVIA and omega-conotoxin MVIIA. J. Pharmacol. Exp. Ther.323(2), 458–468 (2007).
  • MacKay JA, Li W, Huang Z et al. HIV TAT peptide modifies the distribution of DNA nanolipoparticles following convection-enhanced delivery. Mol. Ther.16(5), 893–900 (2008).
  • CBTRUS (2005), Statistical report: primary brain tumors in the United States, 1998–2002. Central Brain Tumor Registry of the United States, IL, USA (2005).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005).
  • Gallia GL, Brem S, Brem H. Local treatment of malignant brain tumors using implantable chemotherapeutic polymers. J. Natl Compr. Cancer Netw.3, 721–728 (2005).
  • Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics5(1), 123–127 (2008).
  • Krauze MT, Saito R, Noble C et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J. Neurosurg.103(5), 923–929 (2005).
  • Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg.90(2), 315–320 (1999).
  • Tanner PG, Holtmannspotter M, Ton JC, Goldbrunner R. Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery61(4), E880–E882 (2007).
  • Raghavan R, Brady ML, Rodríguez-Ponce MI, Hartlep A, Pedain C, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg. Focus20(4), E12 (2006).
  • Oh S, Odland R, Wilson SR et al. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. J. Neurosurg.107(3), 568–577 (2007).
  • Olson JJ, Zhang Z, Dillehay D, Stubbs J. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J. Neurooncol.89(2), 159–168 (2008).
  • Tatter SB, Shaw EG, Rosenblum ML et al.; New approaches to brain tumor therapy central nervous system Consortium. An inflatable balloon catheter and liquid 125I radiation source (GliaSite radiation therapy system) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J. Neurosurg.99(2), 297–303 (2003).
  • Varenika V, Dickinson P, Bringas J et al. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J. Neurosurg.109(5), 874–880 (2008).
  • Voges J, Reszka R, Gossmann A et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann. Neurol.54(4), 479–487 (2003).
  • Pöpperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging32(9), 1018–1025 (2005).
  • Lonser RR, Schiffman R, Robison RA et al. Image-guided, direct convective delivery of glucocerebrosidase for neuronopathic Gaucher disease. Neurology68(4), 254–261 (2007).
  • Rueger MA, Winkeler A, Thomas AV, Kracht LW, Jacobs AH. Molecular imaging-guided gene therapy of gliomas. Handb. Exp. Pharmacol.185(Pt 2), 341–345 (2008).
  • Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res.67(6), 2729–2735 (2007).
  • Mardor Y, Rahav O, Zauberman Y et al. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res.65(15), 6858–6863 (2005).
  • Perlstein B, Ram Z, Daniels D et al. Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro Oncol.10(2), 153–161 (2008).
  • Krauze MT, Noble CO, Kawaguchi T et al. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro Oncol.9(4), 393–403 (2007).
  • Saito R, Krauze MT, Noble CO et al. Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: implications for local drug delivery. J. Neurosci. Methods154(1–2), 225–232 (2006).
  • Chen MY, Hoffer A, Morrison PF et al. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J. Neurosurg.103(2), 311–319 (2005).
  • MacKay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res.1035(2), 139–153 (2005).
  • Goldberg L, Ocherashvilli A, Daniels D et al. Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats. Mol. Cancer Ther.7(11), 3609–3616 (2008).
  • Kikuchi T, Saito R, Sugiyama S et al. Convection-enhanced delivery of polyethylene glycol-coated liposomal doxorubicin: characterization and efficacy in rat intracranial glioma models. J. Neurosurg.109(5), 867–873 (2008).
  • Jagannathan J, Walbridge S, Butman JA, Oldfield EH, Lonser RR. Effect of ependymal and pial surfaces on convection-enhanced delivery. J. Neurosurg.109(3), 547–552 (2008).
  • Hadjipanayis CG, Fellows-Mayle W, Deluca NA. Therapeutic efficacy of a herpes simplex virus with radiation or temozolomide for intracranial glioblastoma after convection-enhanced delivery. Mol. Ther.16(11), 1783–1788 (2008).
  • Cunningham J, Pivirotto P, Bringas J et al. Biodistribution of adeno-associated virus type-2 in nonhuman primates after convection-enhanced delivery to brain. Mol. Ther.16(7), 1267–1275 (2008).
  • Grondin R, Zhang Z, Ai Y et al. Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant17(4), 373–381 (2008).
  • Rousseau J, Boudou C, Barth RF, Balosso J, Estève F, Elleaume H. Enhanced survival and cure of F98 glioma-bearing rats following intracerebral delivery of carboplatin in combination with photon irradiation. Clin. Cancer Res.13(17), 5195–5201 (2007).
  • Saito R, Krauze MT, Noble CO et al. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro Oncol.8(3), 205–214 (2006).
  • Saito R, Krauze MT, Noble CO et al. Tissue affinity of the infusate affects the distribution volume during convection-enhanced delivery into rodent brains: implications for local drug delivery. J. Neurosci. Methods154(1–2), 225–232 (2006).
  • Nguyen TT, Pannu YS, Sung C et al. Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J. Neurosurg.98(3), 584–590 (2003).
  • Dickinson PJ, LeCouteur RA, Higgins RJ et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J. Neurosurg.108(5), 989–998 (2008).
  • Debinski W, Gibo DM, Wykosky J, Stanton C, Rosmeissl J, Robertson J. Canine brain tumors over-express common molecular denominators of human high-grade astrocytomas. Neurooncol.9(4), 535–536 (2007).
  • Debinski W, Gibo DM, Kealiher A et al. Novel anti-brain tumor cytotoxins specific for cancer cells. Nature Biotech.16, 449–453 (1998).
  • Debinski W. Molecular targeting of brain tumors with cytotoxins. In: Chimeric Toxins. Lorberboum-Galski H, Lazarovici P (Eds). Harwood Academic Publishers, NJ, USA 222–246 (2002).
  • Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nature Med.3, 1362–1368 (1997).
  • Iglewski BH, Kabat D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl Acad. Sci. USA72, 2284–2288 (1975).
  • Pastan I, Chaudhary VK, Fitzgerald D. Recombinant toxins as novel therapeutic agents. Ann. Rev. Biochem.61, 331–354 (1992).
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf–CRM107) for therapy of malignant gliomas. J. Neurooncol.65, 3–13 (2003).
  • Celtic Pharma press release. Celtic Pharma terminates Transmid™ trial KSB311R/CIII/001. Bermuda, London, NY, February 7 (2007).
  • Debinski W, Puri RK, Kreitman RJ et al. A wide range of human cancers express interleukin-4 receptors that can be targeted with a chimeric toxin containing Pseudomonas exotoxin A. J. Biol. Chem.268, 14065–14070 (1993).
  • Nutt CL, Mani DR, Betensky RA et al. Gene expression-based classification of malignant gliomas correlated better with survival than histological classification. Cancer Res.63, 1602–1607 (2003).
  • Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant protein composed of transforming growth factor TGF-α and a mutated form of Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol.65, 27–35 (2003).
  • Debinski W, Obiri NI, Pastan I et al. A novel chimeric protein composed of interleukin-13 (IL-13) and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for IL-13 and IL-4. J. Biol. Chem.270, 16775–16780 (1995).
  • Debinski W, Obiri NI, Powers SK, Pastan I, Puri RK. Human glioma cells over-express receptor for IL-13 and are extremely sensitive to a novel chimeric protein composed of IL-13 and Pseudomonas exotoxin. Clin. Cancer Res.1, 1253–1258 (1995).
  • Kunwar S, Westphal M, Medhorn M et al. Results from PRECISE: a randomized Phase 3 study in patients with first recurrent GBM comparing cintredekin besudotox administered via convection-enhanced delivery with Gliadel wafers. Neurooncol.9, 531 (2007).
  • Mintz A, Gibo DM, Slagle-Webb B, Christensen ND, Debinski W. IL-13Rα2 is a glioma-restricted receptor for Interleukin-13. Neoplasia4, 388–399 (2002).
  • Mardor Y, Roth Y, Lidar Z et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res.61(13), 4971–4973 (2001).
  • Wykosky J, Gibo DM, Stanton C, Debinski W. IL-13Rα-2, EphA2, and Fra-1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin. Cancer Res.14, 199–208 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.