179
Views
26
CrossRef citations to date
0
Altmetric
Review

Myelin lesions associated with lysosomal and peroxisomal disorders

, &
Pages 1449-1466 | Published online: 09 Jan 2014

References

  • Powers JM. The leukodystrophies: overview and classification. In: Myelin Biology and Disorders (Volume 2). Lazzarini RA (Ed.). Elsevier Academic Press, CA, USA, 663–690 (2004).
  • van der Knaap MS, Valk J (Eds). Magnetic Resonance of Myelination and Myelin Disorders (3rd Edition). Springer, NY, USA (2005).
  • de Duve C. The lysosome turns fifty. Nat. Cell Biol.7(9), 847–849 (2005).
  • Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol. Histopathol.25(1), 99–112 (2010).
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell132(1), 27–42 (2008).
  • Walkley SU. Pathogenic cascades in lysosomal disease – why so complex? J. Inherit. Metab. Dis.32(2), 181–189 (2009).
  • Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta.1793(4), 684–696 (2009).
  • Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta1793(4), 697–709 (2009).
  • Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell. Biol.10(9), 623–635 (2009).
  • Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease – lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim. Biophys. Acta.1793(4), 710–725 (2009).
  • Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. Biochim. Biophys. Acta1793(4), 726–736 (2009).
  • Polo S, Di Fiore PP. Endocytosis conducts the cell signaling orchestra. Cell124(5), 897–900 (2006).
  • Tettamanti G, Bassi R, Viani P, Riboni L. Salvage pathways in glycosphingolipid metabolism. Biochemie85(3–4), 432–437 (2003).
  • van der Voorn JP, Kamphorst W, van der Knaap MS, Powers JM. The leukoencephalopathy of infantile GM1 gangliosidosis: oligodendrocytic loss and axonal dysfunction. Acta Neuropathol.107(6), 539–545 (2004).
  • Suzuki K, Suzuki K. Lysosomal diseases. In: Greenfield’s Neuropathology (8th Edition). Love S, Louis DN, Ellison DW (Eds). Hodder Arnold, London, UK, 515–599 (2008).
  • Cesani M, Capotondo A, Plati T et al. Characterization of new arylsulfatase A gene mutations reinforces genotype–phenotype correlation in metachromatic leukodystrophy. Hum. Mutat.30(10), E936–E945 (2009).
  • Hess B, Saftig P, Hartmann D et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl Acad. Sci. USA93(25), 14821–14826 (1996).
  • Sun Y, Witte DP, Ran H et al. Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice. Hum. Mol. Genet.17(15), 2345–2356 (2008).
  • Saravanan K, Schaeren-Wiemers N, Klein D et al. Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol. Dis.16(2), 396–406 (2004).
  • Klein D, Yaghootfam A, Matzner U et al. Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells. Biol. Chem.390(1), 41–48 (2009).
  • Tempesta MC, Salvayre R, Levade T. Functional compartments of sulphatide metabolism in cultured living cells: evidence for the involvement of a novel sulphatide-degrading pathway. Biochem. J.297(3), 479–489 (1994).
  • Eckhardt M, Hedayati KK, Pitsch J et al. Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J. Neurosci.27(34), 9009–9021 (2007).
  • Ramakrishnan H, Hedayati KK, Lüllmann-Rauch R et al. Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. J. Neurosci.27(35), 9482–9490 (2007).
  • Wenger DA, Rafi MA, Luzi P, Datto J, Costantino-Ceccarini E. Krabbe disease: genetic aspects and progress toward therapy. Mol. Genet. Metab.70(1), 1–9 (2000).
  • Xu C, Sakai N, Taniike M, Inui K, Ozono K. Six novel mutations detected in the GALC gene in 17 Japanese patients with Krabbe disease, and new genotype-phenotype correlation. J. Hum. Genet.51(6), 548–554 (2006).
  • Giri S, Jatana M, Rattan R, Won JS, Singh I, Singh AK. Galactosylsphingosine (psychosine)-induced expression of cytokine-mediated inducible nitric oxide synthases via AP-1 and C/EBP: implications for Krabbe disease. FASEB J.16(7), 661–672 (2002).
  • Castaneda JA, Lim MJ, Cooper JD, Pearce DA. Immune system irregularities in lysosomal storage disorders. Acta Neuropathol.115(2), 159–174 (2008).
  • Wenger DA. Murine, canine and non-human primate models of Krabbe disease. Mol. Med. Today6(11), 449–451 (2000).
  • Suzuki K, Taniike M. Murine model of genetic demyelinating disease: the twitcher mouse. Microsc. Res. Tech.32(3), 204–214 (1995).
  • Giri S, Khan M, Nath N, Singh I, Singh AK. The role of AMPK in psychosine mediated effects on oligodendrocytes and astrocytes: implication for Krabbe disease. J. Neurochem.105(5), 1820–1833 (2008).
  • White AB, Givogri MI, Lopez-Rosas A et al. Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. J. Neurosci.29(19), 6068–6077 (2009).
  • Matsuda J, Yoneshige A, Suzuki K. The function of sphingolipids in the nervous system: lessons learnt from mouse models of specific sphingolipid activator protein deficiencies. J. Neurochem.103(Suppl. 1), 32–38 (2007).
  • Wanders RJA, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem.75, 295–332 (2006).
  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim. Biophys. Acta1763(12), 1733–1748 (2006).
  • Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta1763(12), 1707–1720 (2006).
  • Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat. Clin. Pract. Neurol.3(3), 140–151 (2007).
  • Ferdinandusse S, Denis S, Mooyer PA et al. Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann. Neurol.59(1), 92–104 (2006).
  • Ferdinandusse S, Ylianttila MS, Gloerich J et al. Mutational spectrum of D-bifunctional protein deficiency and structure-based genotype–phenotype analysis. Am. J. Hum. Genet.78(1), 112–124 (2006).
  • Wanders RJ, Ferdinandusse S, Brites P, Kemp S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta1801(3), 272–280 (2010).
  • Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim. Biophys. Acta1763(12), 1755–1766 (2006).
  • Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim. Biophys. Acta1763(12), 1511–1526 (2006).
  • Ahlemeyer B, Neubert I, Kovacs WJ, Baumgart-Vogt E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J. Comp. Neurol.505(1), 1–17 (2007).
  • Powers JM, Moser HW. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol.8(1), 101–120 (1998).
  • Powers JM, DeCiero DP, Ito M, Moser AB, Moser HW. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J. Neuropathol. Exp. Neurol.59(2), 89–102 (2000).
  • van Roermund CWT, Visser WF, IJlst L et al. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J.22(12), 4201–4208 (2008).
  • Ito M, Blumberg BM, Mock DJ et al. Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J. Neuropathol. Exp. Neurol.60(10), 1004–1019 (2001).
  • Asheuer M, Bieche I, Laurendeau I et al. Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. Hum. Mol. Genet.14(10), 1293–1303 (2005).
  • Semmler A, Bao X, Cao G et al. Genetic variants of methionine metabolism and X-ALD phenotype generation: results of a new study sample. J. Neurol.256(8), 1277–1280 (2009).
  • Powers JM. Peroxisomal diseases. In: Greenfield’s Neuropathology (8th Edition). Love S, Louis DN, Ellison DW (Eds). Hodder Arnold, London, UK, 643–673 (2008).
  • Powers JM, Pei Z, Heinzer AK et al. Adreno-leukodystrophy: oxidative stress of mice and men. J. Neuropathol. Exp. Neurol.64(12), 1067–1079 (2005).
  • Lu JF, Barron-Casella E, Deering R et al. The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage. Lab. Invest.87(3), 261–272 (2007).
  • Fourcade S, López-Erauskin J, Galino J et al. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum. Mol. Genet.17(12), 1762–1773 (2008).
  • Powers JM, DeCiero DP, Cox C et al. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J. Neuropathol. Exp. Neurol.60(5), 493–501 (2001).
  • Höftberger R, Kunze M, Weinhofer I et al. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: implications for X-linked adrenoleukodystrophy. Neurobiol. Dis.28(2), 165–174 (2007).
  • Kassmann CM, Nave KA. Oligodendroglial impact on axonal function and survival – a hypothesis. Curr. Opin. Neurol.21(3), 235–241 (2008).
  • Baes M, Aubourg P. Peroxisomes, myelination, and axonal integrity in the CNS. Neuroscientist15(4), 367–379 (2009).
  • Kassmann CM, Lappe-Siefke C, Baes M et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet.39(8), 969–976 (2007).
  • Hulshagen L, Krysko O, Bottelbergs A et al. Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J. Neurosci.28(15), 4015–4027 (2008).
  • Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain132(Pt 2), 482–492 (2009).
  • Khan M, Singh J, Singh I. Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. J. Neurochem.106(4), 1766–1779 (2008).
  • Huyghe S, Schmalbruch H, Hulshagen L, Veldhoven PV, Baes M, Hartmann D. Peroxisomal multifunctional protein-2 deficiency causes motor deficits and glial lesions in the adult central nervous system. Am. J. Pathol.168(4), 1321–1334 (2006).
  • Kemp S, Wanders RJ. X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol. Genet. Metab.90(3), 268–276 (2007).
  • Fourcade S, Ruiz M, Camps C et al. A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am. J. Physiol. Endocrinol. Metab.296(1), E211–E221 (2009).
  • Porter MT, Fluharty AL, Kihara H. Correction of abnormal cerebroside sulfate metabolism in cultured metachromatic leukodystrophy fibroblasts. Science172(989), 1263–1265 (1971).
  • Brady RO. Enzyme replacement for lysosomal diseases. Annu. Rev. Med.57, 283–296 (2006).
  • Schröder S, Matthes F, Hyden P et al. Site-specific analysis of N-linked oligosaccharides of recombinant lysosomal arylsulfatase A produced in different cell lines. Glycobiology20(2), 248–259 (2010).
  • Krivit W, Shapiro E, Kennedy W et al. Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N. Engl. J. Med.322(1), 28–32 (1990).
  • Biffi A, Lucchini G, Rovelli A, Sessa M. Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplant.42(Suppl. 2), S2–S6 (2008).
  • Orchard PJ, Blazar BR, Wagner J et al. Hematopoietic cell therapy for metabolic disease. J. Pediatr.151(4), 340–346 (2007).
  • Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant.31(4), 229–239 (2003).
  • Peters C. Hematopoietic stem cell transplantation for storage diseases. In: Thomas’ Hematopoietic Cell Transplantation: Stem Cell Transplantation (4th Edition). Appelbaum FR, Forman SJ, Negrin RS (Eds). Wiley, Oxford, UK, 1136–1162 (2009).
  • Matzner U, Lüllmann-Rauch R, Stroobants S et al. Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol. Ther.17(4), 600–606 (2009).
  • Lagranha VL, Baldo G, de Carvalho TG et al. In vitro correction of ARSA deficiency in human skin fibroblasts from metachromatic leukodystrophy patients after treatment with microencapsulated recombinant cells. Metab. Brain Dis.23(4), 469–484 (2008).
  • Lattanzi A, Neri M, Maderna C et al. Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum. Mol. Genet.19(11), 2208–2227 (2010).
  • Colle MA, Piguet F, Bertrand L et al. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in nonhuman primate. Hum. Mol. Genet.19(1), 147–158 (2010).
  • Iwamoto N, Watanabe A, Yamamoto M et al. Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adeno-associated viral vector serotype 1. J. Gene Med.11(6), 498–505 (2009).
  • Biffi A, Capotondo A, Fasano S et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J. Clin. Invest.116(11), 3070–3082 (2006).
  • Suzuki K, Suzuki K. The twitcher mouse: a model for Krabbe disease and for experimental therapies. Brain Pathol.5(3), 249–258 (1995).
  • Luzi P, Rafi MA, Zaka M et al. Biochemical and pathological evaluation of long-lived mice with globoid cell leukodystrophy after bone marrow transplantation. Mol. Genet. Metab.86(1–2), 150–159 (2005).
  • Schiffmann R, Brady RO. New prospects for the treatment of lysosomal storage diseases. Drugs62(5), 733–742 (2002).
  • Escolar ML, Poe MD, Martin HR, Kurtzberg J. A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics118(3), e879–e889 (2006).
  • Prasad VK, Kurtzberg J. Emerging trends in transplantation of inherited metabolic diseases. Bone Marrow Transplant.41(2), 99–108 (2008).
  • Lim ZY, Ho AY, Abrahams S et al. Sustained neurological improvement following reduced-intensity conditioning allogeneic haematopoietic stem cell transplantation for late-onset Krabbe disease. Bone Marrow Transplant.41, 831–832 (2008).
  • Lee WC, Courtenay A, Troendle FJ et al. Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J.19(11), 1549–1551 (2005).
  • Lee WC, Tsoi YK, Troendle FJ et al. Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J.21(10), 2520–2527 (2007).
  • Rafi MA, Zhi Rao H, Passini MA et al. AAV-mediated expression of galactocerebrosidase in brain results in attenuated symptoms and extended life span in murine models of globoid cell leukodystrophy. Mol. Ther.11(5), 734–744 (2005).
  • Biswas S, LeVine SM. Substrate-reduction therapy enhances the benefits of bone marrow transplantation in young mice with globoid cell leukodystrophy. Pediatr. Res.51(1), 40–47 (2002).
  • Luzi P, Abraham RM, Rafi MA, Curtis M, Hooper DC, Wenger DA. Effects of treatments on inflammatory and apoptotic markers in the CNS of mice with globoid cell leukodystrophy. Brain Res.1300, 146–158 (2009).
  • Pannuzzo G, Cardile V, Costantino-Ceccarini E, Alvares E, Mazzone D, Perciavalle V. A galactose-free diet enriched in soy isoflavones and antioxidants results in delayed onset of symptoms of Krabbe disease in twitcher mice. Mol. Genet. Metab.100(3), 234–240 (2010).
  • Moser HW, Tutschka PJ, Brown FR 3rd et al. Bone marrow transplant in adrenoleukodystrophy. Neurology34(11), 1410–1417 (1984).
  • Aubourg P, Blanche S, Jambaque I et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N. Engl. J. Med.322, 1860–1866 (1990).
  • Yanagisawa N, Shimada K, Miyazaki T et al. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages. Lipids Health Dis.7, 48–57 (2008).
  • Shapiro E, Krivit W, Lockman L et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet356(9231), 713–718 (2000).
  • Peters C, Charnas LR, Tan Y et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood104(3), 881–888 (2004).
  • Mahmood A, Raymond GV, Dubey P, Peters C, Moser HW. Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study. Lancet Neurol.6(8), 687–692 (2007).
  • Semmler A, Köhler W, Jung HH, Weller M, Linnebank M. Therapy of X-linked adrenoleukodystrophy. Expert Rev. Neurother.8(9), 1367–1379 (2008).
  • Drover VA. Adrenoleukodystrophy: recent advances in treatment and disease etiology. Clin. Lipidol.4(2), 205–213 (2009).
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science326(5954), 818–823 (2009).
  • Moser HW, Raymond GV, Lu SE et al. Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch. Neurol.62(7), 1073–1080 (2005).
  • Moser HW, Moser AB, Hollandsworth K, Brereton NH, Raymond GV. ‘Lorenzo’s oil’ therapy for X-linked adrenoleukodystrophy: rationale and current assessment of efficacy. J. Mol. Neurosci.33(1), 105–113 (2007).
  • Tolar J, Orchard PJ, Bjoraker KJ, Ziegler RS, Shapiro EG, Charnas L. N-acetyl-L-cysteine improves outcome of advanced cerebral adrenoleukodystrophy. Bone Marrow Transplant.39(4), 211–215 (2007).
  • Cartier N, Aubourg P. Hematopoietic stem cell gene therapy in Hurler syndrome, globoid cell leukodystrophy, metachromatic leukodystrophy and X-adrenoleukodystrophy. Curr. Opin. Mol. Ther.10(5), 471–478 (2008).
  • Sakai N. Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain Dev.31(7), 485–487 (2009).
  • Kemp S, Valianpour F, Denis S et al. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol. Genet. Metab.84(2), 144–151 (2005).
  • Ofman R, Dijkstra IM, van Roermund CW et al. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol. Med.2(3), 90–97 (2010).
  • Taylor RM, Lee JP, Palacino JJ et al. Intrinsic resistance of neural stem cells to toxic metabolites may make them well suited for cell non-autonomous disorders: evidence from a mouse model of Krabbe leukodystrophy. J. Neurochem.97(6), 1585–1599 (2006).
  • Pellegatta S, Tunici P, Poliani PL et al. The therapeutic potential of neural stem/progenitor cells in murine globoid cell leukodystrophy is conditioned by macrophage/microglia activation. Neurobiol. Dis.21(2), 314–323 (2006).
  • Zhao G, McCarthy NF, Sheehy PA, Taylor RM. Comparison of the behavior of neural stem cells in the brain of normal and twitcher mice after neonatal transplantation. Stem Cells Dev.16(3), 429–438 (2007).
  • Strazza M, Luddi A, Carbone M et al. Significant correction of pathology in brains of twitcher mice following injection of genetically modified mouse neural progenitor cells. Mol. Genet. Metab.97(1), 27–34 (2009).
  • Kawabata K, Migita M, Mochizuki H et al. Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res.1094(1), 13–23 (2006).
  • Klein D, Schmandt T, Muth-Köhne E et al. Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther.13(24), 1686–1695 (2006).
  • Givogri MI, Bottai D, Zhu HL et al. Multipotential neural precursors transplanted into the metachromatic leukodystrophy brain fail to generate oligodendrocytes but contribute to limit brain dysfunction. Dev. Neurosci.30(5), 340–357 (2008).
  • Meikle PJ, Grasby DJ, Dean CJ et al. Newborn screening for lysosomal storage disorders. Mol. Genet. Metab.88(4), 307–314 (2006).
  • Marsden D, Levy H. Newborn screening of lysosomal storage disorders. Clin. Chem.56(7), 1071–1079 (2010).
  • Raymond GV, Jones RO, Moser AB. Newborn screening for adrenoleukodystrophy: implications for therapy. Mol. Diagn. Ther.11(6), 381–384 (2007).
  • Hubbard WC, Moser AB, Liu AC et al. Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. Mol. Genet. Metab.97(3), 212–220 (2009).
  • Duffner PK, Caggana M, Orsini JJ et al. Newborn screening for Krabbe disease: the New York State model. Pediatr. Neurol.40, 245–252 (2009).
  • Galbiati F, Basso V, Cantuti L et al. Autonomic denervation of lymphoid organs leads to epigenetic immune atrophy in a mouse model of Krabbe disease. J. Neurosci.27(50), 13730–13738 (2007).
  • Plati T, Visigalli I, Capotondo A et al. Development and maturation of invariant NKT cells in the presence of lysosomal engulfment. Eur. J. Immunol.39(10), 2748–2754 (2009).
  • Wu L, Gabriel CL, Parekh VV, Van Kaer L. Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens73(6), 535–545 (2009).
  • Khan M, Haq E, Giri S, Singh I, Singh AK. Peroxisomal participation in psychosine-mediated toxicity: implications for Krabbe’s disease. J. Neurosci. Res.80(6), 845–854 (2005).
  • Thoms S, Grønborg S, Gärtner J. Organelle interplay in peroxisomal disorders. Trends Mol. Med.15(7), 293–302 (2009).
  • Miller RH, Bai L. Cellular approaches for stimulating CNS remyelination. Regen. Med.2(5), 817–829 (2007).
  • Mastroeni R, Bensadoun JC, Charvin D, Aebischer P, Pujol A, Raoul C. Insulin-like growth factor-1 and neurotrophin-3 gene therapy prevents motor decline in an X-linked adrenoleukodystrophy mouse model. Ann. Neurol.66(1), 117–122 (2009).
  • Fourcade S, Ruiz M, Guilera C et al. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum. Mol. Genet.19(10), 2005–2014 (2010).
  • Calzà L, Fernandez M, Giardino L. Cellular approaches to central nervous system remyelination stimulation: thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J. Mol. Endocrinol.44(1), 13–23 (2010).
  • Damjanov I. Central nervous system. In: Anderson’s Pathology. Damjanov I, Linder J, Anderson WAD (Eds). CRC Press, MO, USA, 2693–2798 (1996)
  • Rosenberg R. Metabolic disease of the nervous system. In: The Clinical Neurosciences. Churchill Livingstone, NY, USA, 447–493 (1983)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.