122
Views
19
CrossRef citations to date
0
Altmetric
Theme: Epilepsy - Review

Animal models for autosomal dominant frontal lobe epilepsy: on the origin of seizures

Pages 1859-1867 | Published online: 09 Jan 2014

References

  • Steinlein OK, Mulley JC, Propping P et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet.11, 201–203 (1995).
  • Hirose S, Iwata H, Akiyoshi H et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology53, 1749–1753 (1999).
  • Steinlein OK, Magnusson A, Stoodt J et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum. Mol. Genet.6, 943–947 (1997).
  • Leniger T, Kananura C, Hufnagel A, Bertrand S, Bertrand D, Steinlein OK. A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia44, 981–985 (2003).
  • Chen Y, Wu L, Fang Y et al. A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in sporadic nocturnal frontal lobe epilepsy. Epilepsy Res.83, 152–156 (2009).
  • De Fusco M, Becchetti A, Patrignani A et al. The nicotinic receptor β 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet.26, 275–276 (2000).
  • McLellan A, Phillips HA, Rittey C et al. Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia44, 613–617 (2003).
  • Hoda JC, Gu W, Friedli M et al. Human nocturnal frontal lobe epilepsy, pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor β-subunit mutations outside the ion channel pore. Mol. Pharmacol.74, 379–391 (2008).
  • Bertrand D, Elmslie F, Hughes E et al. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol. Dis.20, 799–804 (2005).
  • Aridon P, Marini C, Di Resta C et al. Increased sensitivity of the neuronal nicotinic receptor α 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet.79, 342–350 (2006).
  • Phillips HA, Marini C, Scheffer IE, Sutherland GR, Mulley JC, Berkovic SF. A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann. Neurol.48, 264–267 (2000).
  • Cho YW, Motamedi GK, Laufenberg I et al. A Korean kindred with autosomal dominant nocturnal frontal lobe epilepsy and mental retardation. Arch. Neurol.60, 1625–1632 (2003).
  • Magnusson A, Stordal E, Brodtkorb E, Steinlein O. Schizophrenia, psychotic illness and other psychiatric symptoms in families with autosomal dominant nocturnal frontal lobe epilepsy caused by different mutations. Psychiatr. Genet.13, 91–95 (2003).
  • Bertrand D, Picard F, le Hellard S et al. How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia43(Suppl. 5), 112–122 (2002).
  • Baraban SC. Emerging epilepsy models, insights from mice, flies, worms and fish. Curr. Opin. Neurol.20, 64–68 (2007).
  • Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell. Mol. Neurobiol.29, 859–869 (2009).
  • Canzian F. Phylogenetics of the laboratory rat Rattus norvegicus. Genome Res.7, 262–267 (1997).
  • Tesson L, Cozzi J, Menoret S et al. Transgenic modifications of the rat genome. Transgenic Res.14, 531–546 (2005).
  • Li P, Tong C, Mehrian-Shai R et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell135, 1299–1310 (2008).
  • Aitman TJ, Critser JK, Cuppen E et al. Progress and prospects in rat genetics, a community view. Nat. Genet.40, 516–522 (2008).
  • Wall RJ. New gene transfer methods. Theriogenology57, 189–201 (2002).
  • Cohen G, Han ZY, Grailhe R et al. β 2 nicotinic acetylcholine receptor subunit modulates protective responses to stress, a receptor basis for sleep-disordered breathing after nicotine exposure. Proc. Natl Acad. Sci. USA99, 13272–13277 (2002).
  • Marubio LM, del Mar Arroyo-Jimenez M et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature398, 805–810 (1999).
  • Picciotto MR, Zoli M, Rimondini R et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature391, 173–177 (1998).
  • Ross SA, Wong JY, Clifford JJ et al. Phenotypic characterization of an α 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J. Neurosci.20, 6431–6441 (2000).
  • Wong JY, Ross SA, McColl C et al. Proconvulsant-induced seizures in α (4) nicotinic acetylcholine receptor subunit knockout mice. Neuropharmacology43, 55–64 (2002).
  • McColl CD, Horne MK, Finkelstein DI, Wong JY, Berkovic SF, Drago J. Electroencephalographic characterisation of pentylenetetrazole-induced seizures in mice lacking the α 4 subunit of the neuronal nicotinic receptor. Neuropharmacology44, 234–243 (2003).
  • Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J. Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc. Natl Acad. Sci. USA103, 19152–19157 (2006).
  • Teper Y, Whyte D, Cahir E et al. Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation. J. Neurosci.27, 10128–10142 (2007).
  • Manfredi I, Zani AD, Rampoldi L et al. Expression of mutant β2 nicotinic receptors during development is crucial for epileptogenesis. Hum. Mol. Genet.18, 1075–1088 (2009).
  • Zhu G, Okada M, Yoshida S et al. Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. J. Neurosci.28, 12465–12476 (2008).
  • Mulle C, Léna C, Changeux JP. Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron8, 937–945 (1992).
  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron8, 127–134 (1992).
  • Liu QS, Berg DK. Extracellular calcium regulates responses of both α3- and α7-containing nicotinic receptors on chick ciliary ganglion neurons. J. Neurophysiol.82, 1124–1132 (1999).
  • Rodrigues-Pinguet N, Jia L, Li M et al. Five ADNFLE mutations reduce the Ca2+ dependence of the mammalian α4β2 acetylcholine response. J. Physiol.550, 11–26 (2003).
  • Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D. Human α4β2 neuronal nicotinic acetylcholine receptor in HEK 293 cells, a patch-clamp study. J. Neurosci.16, 7880–7891 (1996).
  • Rodrigues-Pinguet NO, Pinguet TJ, Figl A, Lester HA, Cohen BN. Mutations linked to autosomal dominant nocturnal frontal lobe epilepsy affect allosteric Ca2+ activation of the α 4 β 2 nicotinic acetylcholine receptor. Mol. Pharmacol.68, 487–501 (2005).
  • Le Novère N, Grutter T, Changeux JP. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl Acad. Sci. USA99, 3210–3215 (2002).
  • Scheffer IE, Bhatia KP, Lopes-Cendes I et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain118, 61–73 (1995).
  • Hayden EC. Human genome at ten, life is complicated. Nature464, 664–667 (2010).
  • Oliveri P, Tu Q, Davidson EH. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl Acad. Sci. USA105, 5955–5962 (2008).
  • Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science282, 2028–2033 (1998).
  • Kamath RS, Fraser AG, Dong AG. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature421, 231–237 (2003).
  • Kim JK, Gabel HW, Kamath RS et al. Functional genomic analysis of RNA interference in C. elegans. Science308, 1164–1167 (2005).
  • Nonet ML. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein–GFP fusions. J. Neurosci. Methods89, 33–40 (1999).
  • Williams SN, Locke CJ, Braden AL, Caldwell KA, Caldwell GA. Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum. Mol. Genet.13, 2043–2059 (2004).
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics77, 71–94 (1974).
  • Jospin M, Qi YB, Stawicki TM et al. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol.7(12), e1000265 (2009).
  • Reiner DJ, Newton EM, Tian H, Thomas JH. Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature402, 199–203 (1999).
  • Phelps HA, Neely MN. Evolution of the zebrafish model, from development to immunity and infectious disease. Zebrafish2, 87–103 (2005).
  • Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia48, 1151–1157 (2007).
  • Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience131, 759–768 (2005).
  • Ekker SC. Morphants, a new systematic vertebrate functional genomics approach. Yeast17, 302–306 (2000)
  • Corey DR, Abrams JM. Morpholino antisense oligonucleotides, tools for investigating vertebrate development. Genome Biol.2(5), 1015 (2001).

Website

  • Hirose S, Kurahashi H. Autosomal dominant nocturnal frontal lobe epilepsy (2010). In: GeneReviews at GenTests: Medical Information Resource (database online). University of Washington, Seattle, 1997–2010. www.genetests.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.