461
Views
27
CrossRef citations to date
0
Altmetric
Review

Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment

, &
Pages 589-607 | Published online: 09 Jan 2014

References

  • Healy D. The Creation of Psychopharmacology. Harvard University Press, MA, USA (2002).
  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B. On the presence of 3-hydroxytyramine in brain. Science127(3296), 471 (1958).
  • Hornykiewicz O. The action of dopamine on the arterial blood pressure of the guinea-pig. Br. J. Pharmacol. Chemother.13(1), 91–94 (1958).
  • Hornykiewicz O. Dopamine miracle: from brain homogenate to dopamine replacement. Mov. Disord.17(3), 501–508 (2002).
  • Montagu KA. Catechol compounds in rat tissues and in brains of different animals. Nature180(4579), 244–245 (1957).
  • Kapur S, Mann JJ. Role of the dopaminergic system in depression. Biol. Psychiatry32(1), 1–17 (1992).
  • Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse1(2), 133–152 (1987).
  • Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov. Disord.23(Suppl. 3), S497–S508 (2008).
  • Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci.30(5), 188–193 (2007).
  • Nieoullon A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol.67(1), 53–83 (2002).
  • Standaert DG, Galanter JM. Pharmacology of dopaminergic neurotransmission. In: Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. Golan DE, Tashjian AJ Jr, Armstrong EJ, Armstrong AW (Eds). Lippincott Williams & Wilkins, NY, USA, 185–206 (2008).
  • Kupfermann I. Modulatory actions of neurotransmitters. Annu. Rev. Neurosci.2, 447–465 (1979).
  • Canadian Pharmacists Association. Compendium of Pharmaceuticals and Specialities (CPS). Canadian Pharmacists Association, Ottawa, Canada (2010).
  • Goto Y, Grace AA. The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int. Rev. Neurobiol.78, 41–68 (2007).
  • Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol.78, 1–39 (2007).
  • Remington G. Alterations of dopamine and serotonin transmission in schizophrenia. Prog. Brain Res.172, 117–140 (2008).
  • Williams SM, Goldman-Rakic PS. Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex8(4), 321–345 (1998).
  • Beauregard M, Ferron A, Descarries L. Opposite effects of neurotensin on dopamine inhibition in different regions of the rat brain: an iontophoretic study. Neuroscience47(3), 613–619 (1992).
  • Studler JM, Kitabgi P, Tramu G, Herve D, Glowinski J, Tassin JP. Extensive co-localization of neurotensin with dopamine in rat meso–cortico–frontal dopaminergic neurons. Neuropeptides11(3), 95–100 (1988).
  • Sian J, Gerlach M, Youdim MB, Riederer P. Parkinson’s disease: a major hypokinetic basal ganglia disorder. J. Neural Transm.106(5–6), 443–476 (1999).
  • Mehler-Wex C, Riederer P, Gerlach M. Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotox. Res.10(3–4), 167–179 (2006).
  • Svenningsson P, Fredholm BB, Bloch B, Le Moine C. Co-stimulation of D1/D5 and D2 dopamine receptors leads to an increase in c-fos messenger RNA in cholinergic interneurons and a redistribution of c-fos messenger RNA in striatal projection neurons. Neuroscience98(4), 749–757 (2000).
  • Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature353(6340), 164–167 (1991).
  • Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM. Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J. Neurosci.22(14), 6218–6227 (2002).
  • Scornaiencki R, Cantrup R, Rushlow WJ, Rajakumar N. Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int. J. Neuropsychopharmacol.12(9), 1195–1208 (2009).
  • Lidow MS, Williams GV, Goldman-Rakic PS. The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol. Sci.19(4), 136–140 (1998).
  • Martina M, Bergeron R. D1 and D4 dopaminergic receptor interplay mediates coincident G protein-independent and dependent regulation of glutamate NMDA receptors in the lateral amygdala. J. Neurochem.106(6), 2421–2435 (2008).
  • Hu JL, Liu G, Li YC, Gao WJ, Huang YQ. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons. Mol. Brain,3, 20 (2010).
  • Jardemark K, Marcus MM, Shahid M, Svensson TH. Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: involvement of dopamine D1 receptors. Synapse64(11), 870–874 (2010).
  • Li YC, Liu G, Hu JL, Gao WJ, Huang YQ. Dopamine D1 receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons. J. Neurochem114(1), 62–73 (2010).
  • Cho DI, Quan W, Oak MH, Choi HJ, Lee KY, Kim KM. Functional interaction between dopamine receptor subtypes for the regulation of c-fos expression. Biochem. Biophys. Res. Commun.357(4), 1113–1118 (2007).
  • George SR, Watanabe M, Di Paolo T, Falardeau P, Labrie F, Seeman P. The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form. Endocrinology117(2), 690–697 (1985).
  • McDonald WM, Sibley DR, Kilpatrick BF, Caron MG. Dopaminergic inhibition of adenylate cyclase correlates with high affinity agonist binding to anterior pituitary D2 dopamine receptors. Mol. Cell Endocrinol.36(3), 201–209 (1984).
  • Seeman P, Schwarz J, Chen JF et al. Psychosis pathways converge via D2high dopamine receptors. Synapse60(4), 319–346 (2006).
  • Seeman P, Tallerico T, Ko F. Dopamine displaces [3H]domperidone from high-affinity sites of the dopamine D2 receptor, but not [3H]raclopride or [3H]spiperone in isotonic medium: implications for human positron emission tomography. Synapse49(4), 209–215 (2003).
  • Willeit M, Ginovart N, Kapur S et al. High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol. Psychiatry59(5), 389–394 (2006).
  • Nikolaus S, Antke C, Muller HW. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav. Brain Res.204(1), 32–66 (2009).
  • Graff-Guerrero A, Mizrahi R, Agid O et al. The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology34(4), 1078–1086 (2009).
  • McCormick PN, Kapur S, Reckless G, Wilson AA. Ex vivo [11C]-(+)-PHNO binding is unchanged in animal models displaying increased high-affinity states of the D2 receptor in vitro. Synapse63(11), 998–1009 (2009).
  • Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience41(1), 1–24 (1991).
  • Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet.40(7), 827–834 (2008).
  • Elvevag B, Weinberger DR. Introduction: genes, cognition and neuropsychiatry. Cogn. Neuropsychiatry14(4–5), 261–276 (2009).
  • Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell. Physiol. Biochem.20(6), 687–702 (2007).
  • Tan HY, Callicott JH, Weinberger DR. Prefrontal cognitive systems in schizophrenia: towards human genetic brain mechanisms. Cogn. Neuropsychiatry14(4–5), 277–298 (2009).
  • Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr. Bull.35(3), 549–562 (2009).
  • Deniker P. From chlorpromazine to tardive dyskinesia (brief history of neuroleptics). Psychiatr. J. Univ. Ott.14(1), 253–2259. (1989).
  • Deniker P. The neuroleptics: a historical survey. Acta Physiol. Scand.82, 83–87 (1990).
  • Remington G, Kapur S. The pharmacology of typical and atypical antipsychotics. In: Drug Induced Movement Disorders. Factor SA, Lang A, Weiner WJ (Eds). Blackwell Futura, MA, USA, 55–71 (2005).
  • Carlsson A, Lindqvist, M. Effect of chlorpormazine or haloperidol on formation of 3-methoxy-tyramine and normetanephrine in mouses brain. Acta Pharmicol. Toxicol. (Copenh.),20, 140–144 (1963).
  • Matthysse S. Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed. Proc.32(2), 200–205 (1973).
  • Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature261(5562), 717–719 (1976).
  • Van Rossum J. The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Neuropsychopharmacology, Proceedings of the 5th Collegium Internationale Neuro-psychopharmacologicum (CINP). Brill H, Coyle J, Deniker P, Hippius H, Bradley P (Eds). Excerptica Medica, Amsterdam, The Netherlands, 321–329 (1967).
  • Tonda ME, Guthrie SK. Treatment of acute neuroleptic-induced movement disorders. Pharmacotherapy14(5), 543–560 (1994).
  • Singh MM, Kay SR. A longitudinal therapeutic comparison between two prototypic neuroleptics (haloperidol and chlorpromazine) in matched groups of schizophrenics. Nontherapeutic interactions with trihexyphenidyl. Theoretical implications for potency differences. Psychopharmacologia43(2), 115–121 (1975).
  • FDA approves clozapine for treatment of schizophrenia; careful monitoring required. Hosp. Community Psychiatry40(12), 1310 (1989).
  • Abi-Dargham A. Do we still believe in the dopamine hypothesis? New data bring new evidence. Int. J. Neuropsychopharmacol.7(Suppl. 1), S1–S5 (2004).
  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch. Gen. Psychiatry49(7), 538–544 (1992).
  • Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am. J. Psychiatry157(4), 514–520 (2000).
  • Nordstrom AL, Farde L, Wiesel FA et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol. Psychiatry33(4), 227–235 (1993).
  • Nordstrom AL, Farde L. Plasma prolactin and central D2 receptor occupancy in antipsychotic drug-treated patients. J. Clin. Psychopharmacol.18(4), 305–310 (1998).
  • Turrone P, Kapur S, Seeman MV, Flint AJ. Elevation of prolactin levels by atypical antipsychotics. Am. J. Psychiatry159(1), 133–135 (2002).
  • Fitzgerald P, Dinan TG. Prolactin and dopamine: what is the connection? A review article. J. Psychopharmacol.22(2 Suppl.), 12–19 (2008).
  • Wolkin A, Barouche F, Wolf AP et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am. J. Psychiatry146(7), 905–908 (1989).
  • Kapur S, Remington G. Dopamine D2 receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol. Psychiatry50(11), 873–883 (2001).
  • Kulkarni SK, Ninan I. Dopamine D4 receptors and development of newer antipsychotic drugs. Fundam. Clin. Pharmacol.14(6), 529–539 (2000).
  • Meador-Woodruff JH. Update on dopamine receptors. Ann. Clin. Psychiatry6(2), 79–90 (1994).
  • Muir WJ, Thomson ML, McKeon P et al. Markers close to the dopamine D5 receptor gene (DRD5) show significant association with schizophrenia but not bipolar disorder. Am. J. Med. Genet.105(2), 152–158 (2001).
  • Seeman P, Van Tol HH. Dopamine receptor pharmacology. Curr. Opin. Neurol. Neurosurg,6(4), 602–608 (1993).
  • Stone JM, Davis JM, Leucht S, Pilowsky LS. Cortical dopamine D2/D3 receptors are a common site of action for antipsychotic drugs – an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schizophr. Bull.35(4), 789–797 (2009).
  • Sunahara RK, Seeman P, Van Tol HH, Niznik HB. Dopamine receptors and antipsychotic drug response. Br. J. Psychiatry Suppl. (22), 31–38 (1993).
  • Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog. Neuropsychopharmacol. Biol. Psychiatry27(7), 1091–1099 (2003).
  • Brenner HD, Dencker SJ, Goldstein MJ et al. Defining treatment refractoriness in schizophrenia. Schizophr. Bull.16(4), 551–561 (1990).
  • Baldessarini RJ, Katz B, Cotton P. Dissimilar dosing with high-potency and low-potency neuroleptics. Am. J. Psychiatry141(6), 748–752 (1984).
  • Baldessarini RJ, Cohen BM, Teicher MH. Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch. Gen. Psychiatry45(1), 79–91 (1988).
  • Bollini P, Pampallona S, Orza MJ, Adams ME, Chalmers TC. Antipsychotic drugs: is more worse? A meta-analysis of the published randomized control trials. Psychol. Med.24(2), 307–316 (1994).
  • Baldessarini RJ, Frankenburg FR. Clozapine. A novel antipsychotic agent. N. Engl. J. Med.324(11), 746–754 (1991).
  • Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist. Psychiatry18(1), 39–60 (2007).
  • Hippius H. The history of clozapine. Psychopharmacology (Berl.),99(Suppl.), S3–S5 (1989).
  • Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry45(9), 789–796 (1988).
  • Andreasen NC, Olsen S. Negative v positive schizophrenia. Definition and validation. Arch. Gen. Psychiatry39(7), 789–794 (1982).
  • Carpenter WT, Jr., Heinrichs DW, Wagman AM. Deficit and nondeficit forms of schizophrenia: the concept. Am. J. Psychiatry145(5), 578–583 (1988).
  • Crow TJ. Positive and negative schizophrenic symptoms and the role of dopamine. Br. J. Psychiatry137, 383–386 (1980).
  • Remington G, Foussias G, Agid O. Progress in defining optimal treatment outcome in schizophrenia. CNS Drugs24(1), 9–20 (2010).
  • Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry153(3), 321–330 (1996).
  • Greenwood KE, Landau S, Wykes T. Negative symptoms and specific cognitive impairments as combined targets for improved functional outcome within cognitive remediation therapy. Schizophr. Bull.31(4), 910–921 (2005).
  • Harvey PD, Koren D, Reichenberg A, Bowie CR. Negative symptoms and cognitive deficits: what is the nature of their relationship? Schizophr. Bull.32(2), 250–258 (2006).
  • Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr. A separate disease within the syndrome of schizophrenia. Arch. Gen. Psychiatry58(2), 165–171 (2001).
  • Bora E, Yucel M, Pantelis C. Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr. Bull.36(1), 36–42 (2010).
  • Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov. Disord.24(15), 2175–2186 (2009).
  • Rodriguez-Oroz MC, Jahanshahi M, Krack P et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol.8(12), 1128–1139 (2009).
  • Oguru M, Tachibana H, Toda K, Okuda B, Oka N. Apathy and depression in Parkinson disease. J. Geriatr. Psychiatry Neurol.23(1), 35–41 (2010).
  • Pedersen KF, Alves G, Aarsland D, Larsen JP. Occurrence and risk factors for apathy in Parkinson disease: a 4-year prospective longitudinal study. J. Neurol. Neurosurg. Psychiatry80(11), 1279–1282 (2009).
  • Starkstein SE, Merello M, Jorge R, Brockman S, Bruce D, Power B. The syndromal validity and nosological position of apathy in Parkinson’s disease. Mov. Disord.24(8), 1211–1216 (2009).
  • Pedersen KF, Alves G, Bronnick K, Aarsland D, Tysnes OB, Larsen JP. Apathy in drug-naive patients with incident Parkinson’s disease: the Norwegian ParkWest study. J. Neurol.257(2), 217–223 (2010).
  • Khoo TK, Burn DJ. Non-motor symptoms may herald Parkinson’s disease. Practitioner253(1721), 19–24, 12 (2009).
  • Dujardin K, Sockeel P, Delliaux M, Destee A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov. Disord.24(16), 2391–2397 (2009).
  • Schmidt L, d’Arc BF, Lafargue G et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain131(Pt 5), 1303–1310 (2008).
  • Czernecki V, Schupbach M, Yaici S et al. Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov. Disord.23(7), 964–969 (2008).
  • Haegelen C, Rouaud T, Darnault P, Morandi X. The subthalamic nucleus is a key structure of limbic basal ganglia functions. Med. Hypotheses72(4), 421–426 (2009).
  • Le Jeune F, Drapier D, Bourguignon A et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology73(21), 1746–1751 (2009).
  • Porat O, Cohen OS, Schwartz R, Hassin-Baer S. Association of preoperative symptom profile with psychiatric symptoms following subthalamic nucleus stimulation in patients with Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci.21(4), 398–405 (2009).
  • Van Putten T, May PR, Marder SR, Wittmann LA. Subjective response to antipsychotic drugs. Arch. Gen. Psychiatry38(2), 187–190 (1981).
  • Saeedi H, Remington G, Christensen BK. Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophr. Res.85(1–3), 222–231 (2006).
  • Booij L, Van der Does AJ, Riedel WJ. Monoamine depletion in psychiatric and healthy populations: review. Mol. Psychiatry8(12), 951–973 (2003).
  • Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry12(4), 331–359 (2007).
  • Boot E, Booij J, Hasler G et al. AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures. Eur. J. Nucl. Med. Mol. Imaging35(7), 1350–1356 (2008).
  • Verhoeff N, Christensen BK, Hussey D et al. Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study. Pharmacol. Biochem. Behav.74, 425–432 (2003).
  • Verhoeff NP, Hussey D, Lee M et al. Dopamine depletion results in increased neostriatal D2, but not D1, receptor binding in humans. Mol. Psychiatry7(3), 233, 322–238 (2002).
  • Verhoeff NP, Kapur S, Hussey D et al. A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects. Neuropsychopharmacology25(2), 213–223 (2001).
  • Voruganti L, Slomka P, Zabel P et al. Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D2 binding ratios on SPECT imaging. Neuropsychopharmacology25(5), 642–650 (2001).
  • Voruganti LN, Awad AG. Subjective and behavioural consequences of striatal dopamine depletion in schizophrenia – findings from an in vivo SPECT study. Schizophr. Res.88(1–3), 179–186 (2006).
  • Riccardi P, Baldwin R, Salomon R et al. Estimation of baseline dopamine D2 receptor occupancy in striatum and extrastriatal regions in humans with positron emission tomography with [18F] fallypride. Biol. Psychiatry63(2), 241–244 (2008).
  • Bremner JD, Vythilingam M, Ng CK et al. Regional brain metabolic correlates of alpha-methylparatyrosine-induced depressive symptoms: implications for the neural circuitry of depression. JAMA289(23), 3125–3134 (2003).
  • Hasler G, Luckenbaugh DA, Snow J et al. Reward processing after catecholamine depletion in unmedicated, remitted subjects with major depressive disorder. Biol. Psychiatry66(3), 201–205 (2009).
  • West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J. Neurosci.22(1), 294–304 (2002).
  • Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology15(1), 17–29 (1996).
  • Rinne JO, Portin R, Ruottinen H et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch. Neurol.57(4), 470–475 (2000).
  • Nobili F, Campus C, Arnaldi D et al. Cognitive–nigrostriatal relationships in de novo, drug-naive Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov. Disord.25(1), 35–43 (2010).
  • Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron65(5), 585–596 (2010).
  • Kulisevsky J, Garcia-Sanchez C, Berthier ML et al. Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-year follow-up study of previously untreated patients. Mov. Disord.15(4), 613–626 (2000).
  • Fox SH, Brotchie JM, Lang AE. Non-dopaminergic treatments in development for Parkinson’s disease. Lancet Neurol7(10), 927–938 (2008).
  • Hawkins KA, Keefe RS, Christensen BK et al. Neuropsychological course in the prodrome and first episode of psychosis: findings from the PRIME North America Double Blind Treatment Study. Schizophr. Res.105(1–3), 1–9 (2008).
  • Jahshan C, Heaton RK, Golshan S, Cadenhead KS. Course of neurocognitive deficits in the prodrome and first episode of schizophrenia. Neuropsychology24(1), 109–120 (2010).
  • Hoff AL, Sakuma M, Wieneke M, Horon R, Kushner M, DeLisi LE. Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia. Am. J. Psychiatry156(9), 1336–1341 (1999).
  • Belmaker RH, Wald D. Haloperidol in normals. Br. J. Psychiatry131, 222–223 (1977).
  • de Visser SJ, van der Post J, Pieters MS, Cohen AF, van Gerven JM. Biomarkers for the effects of antipsychotic drugs in healthy volunteers. Br. J. Clin. Pharmacol.51(2), 119–132 (2001).
  • Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl.)174(1), 3–16 (2004).
  • Kosaka J, Takahashi H, Ito H et al. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci.86(21–22), 814–818 (2010).
  • Aleman A, EH FdH, Castner SA, Williams GV, Goldman-Rakic PS. Antipsychotics and working memory in schizophrenia. Science289(5476), 56b-58b (2000).
  • Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science287(5460), 2020–2022 (2000).
  • Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo GA. Dopamine and cognitive functioning in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on working memory. Neuropsychologia47(5), 1374–1381 (2009).
  • Hsieh PC, Yeh TL, Lee IH et al. Correlation between errors on the Wisconsin Card Sorting Test and the availability of striatal dopamine transporters in healthy volunteers. J. Psychiatry Neurosci.35(2), 90–94 (2010).
  • Abi-Dargham A. Recent evidence for dopamine abnormalities in schizophrenia. Eur. Psychiatry17, 341–347 (2002).
  • Abi-Dargham A. Alterations of serotonin transmission in schizophrenia. Int. Rev. Neurobiol.78, 133–164 (2007).
  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry44(7), 660–669 (1987).
  • Weinberger DR. Schizophrenia, the prefrontal cortex, and a mechanism of genetic susceptibility. Eur. Psychiatry17, 355–363 (2002).
  • Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol. Ther.113(2), 296–320 (2007).
  • Kraepelin E. Dementia Praecox and Paraphrenia. Krieger Publishing Co., FL, USA (1971).
  • Archer T. Neurodegeneration in schizophrenia. Expert Rev. Neurother.10(7), 1131–1141 (2010).
  • Lieberman JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol. Psychiatry46(6), 729–739 (1999).
  • Rund BR. Is there a degenerative process going on in the brain of people with schizophrenia? Front. Hum. Neurosci.3, 36 (2009).
  • Waddington JL, Lane A, Scully P et al. Early cerebro-craniofacial dysmorphogenesis in schizophrenia: a lifetime trajectory model from neurodevelopmental basis to ‘neuroprogressive’ process. J. Psychiatr. Res.33(6), 477–489 (1999).
  • Waddington JL, Lane A, Scully PJ, Larkin C, O’Callaghan E. Neurodevelopmental and neuroprogressive processes in schizophrenia. Antithetical or complementary, over a lifetime trajectory of disease? Psychiatr. Clin. North Am.21(1), 123–149 (1998).
  • Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull.35(3), 528–548 (2009).
  • Pantelis C, Yucel M, Wood SJ et al. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr. Bull.31(3), 672–696 (2005).
  • Palmer BW, Heaton SC, Jeste DV. Older patients with schizophrenia: challenges in the coming decades. Psychiatr. Serv.50(9), 1178–1183 (1999).
  • Bleuler E. Dementia Praecox or the Group of Schizophrenias. International Universities Press, NY, USA (1950).
  • Yung AR, McGorry PD. The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr. Bull.22(2), 353–370 (1996).
  • Holland J, Shakhmatova-Pavlova IV. Concept and classification of schizophrenia in the Soviet Union. Schizophr. Bull.3(2), 277–287 (1977).
  • Hafner H, an der Heiden W. Epidemiology of schizophrenia. Can. J. Psychiatry42(2), 139–151 (1997).
  • Yung A. Identification and treatment of the prodromal phase of psychotic disorders: perspectives from the PACE Clinic. Early Inter. Psychiatry1, 224–235 (2007).
  • Addington J, Addington D. Three-year outcome of treatment in an early psychosis program. Can. J. Psychiatry54(9), 626–630 (2009).
  • Buckley PF, Stahl SM. Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand.115(2), 93–100 (2007).
  • Galletly C. Recent advances in treating cognitive impairment in schizophrenia. Psychopharmacology (Berl.)202(1–3), 259–273 (2009).
  • Marder SR. Drug initiatives to improve cognitive function. J. Clin. Psychiatry67(Suppl. 9), 31–35 (2006).
  • Singh SP, Singh V, Kar N, Chan K. Efficacy of antidepressants in treating the negative symptoms of chronic schizophrenia: meta-analysis. Br. J. Psychiatry197(3), 174–179 (2010).
  • Stahl SM, Buckley PF. Negative symptoms of schizophrenia: a problem that will not go away. Acta Psychiatr. Scand.115(1), 4–11 (2007).
  • Foussias G, Mann S, Zakzanis KK, van Reekum R, Remington G. Motivational deficits as the central link to functioning in schizophrenia: a pilot study. Schizophr. Res.115(2–3), 333–337 (2009).
  • Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s Razor. Schizophr. Bull.36(2), 359–369 (2010).
  • Agid O, Kapur S, Remington G. Emerging drugs for schizophrenia. Expert Opin. Emerg. Drugs13(3), 479–495 (2008).
  • Lieberman JA, Drake RE, Sederer LI et al. Science and recovery in schizophrenia. Psychiatr. Serv.59(5), 487–496 (2008).
  • Hans SL, Auerbach JG, Nuechterlein KH et al. Neurodevelopmental factors associated with schizotypal symptoms among adolescents at risk for schizophrenia. Dev. Psychopathol.21(4), 1195–1210 (2009).
  • Reichenberg A, Caspi A, Harrington H et al. Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am. J. Psychiatry167(2), 160–169 (2010).
  • Sorensen HJ, Mortensen EL, Schiffman J, Reinisch JM, Maeda J, Mednick SA. Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophr. Res.118(1–3), 41–47 (2010).
  • Chouinard G, Jones BD. Schizophrenia as dopamine-deficiency disease. Lancet2(8080), 99–100 (1978).
  • Bertolino A, Esposito G, Callicott JH et al. Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. Am. J. Psychiatry157(1), 26–33 (2000).
  • Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJ, Weinberger DR. Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am. J. Psychiatry157(10), 1646–1651 (2000).
  • Slifstein M, Kolachana B, Simpson EH et al. COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol. Psychiatry13(8), 821–827 (2008).
  • de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LG. Catechol-O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. J. Cogn. Neurosci.17, 1018–1025 (2006).
  • Pelayo-Teran JM, Perez-Iglesias R, Vazquez-Bourgon J et al. Catechol-O-methyltransferase Val158Met polymorphism and negative symptoms after acute antipsychotic treatment in first-episode non-affective psychosis. Psychiatry Res.185(1–2), 286–289 (2011).
  • Wang CY, Yu-tao X, Cai ZJ et al. Risperidone maintenance treatment in schizophrenia: a randomized controlled trial. Am. J. Psychiatry167(6), 676–685 (2010).
  • Pelayo-Teran JM, Perez-Iglesias R, Mata I, Carrasco-Marin E, Vazquez-Barquero JL, Crespo-Facorro B. Catechol-O-methyltransferase (COMT) Val158Met variations and cannabis use in first-episode non-affective psychosis: clinical-onset implications. Psychiatry Res.179(3), 291–296 (2010).
  • Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry148(11), 1474–1486 (1991).
  • Carlsson A, Carlsson ML. A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin. Neurosci.8(1), 137–142 (2006).
  • Boshes RA, Manschreck TC. Review of antipsychotic medication administration: a proposal of intermittent dosing. Schizophr. Bull.28(2), 203–222 (2002).
  • Voruganti L, Awad AG. Neuroleptic dysphoria: towards a new synthesis. Psychopharmacology (Berl.)171(2), 121–132 (2004).
  • Braw Y, Bloch Y, Mendelovich S et al. Cognition in young schizophrenia outpatients: comparison of first-episode with multiepisode patients. Schizophr. Bull.34(3), 544–554 (2008).
  • Harvey PD. When does cognitive decline occur in the period prior to the first episode of schizophrenia? Psychiatry (Edgmont)6(7), 12–14 (2009).
  • Irani F, Kalkstein S, Moberg EA, Moberg PJ. Neuropsychological performance in older patients with schizophrenia: a meta-analysis of cross-sectional and longitudinal studies. Schizophr. Bull. DOI: 10.1093/schbul/sbq057 (2010) (Epub ahead of print).
  • Geddes J, Freemantle N, Harrison P, Bebbington P. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ321(7273), 1371–1376 (2000).
  • Jones PB, Barnes TR, Davies L et al. Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Arch. Gen. Psychiatry63(10), 1079–1087 (2006).
  • Lieberman JA, Stroup TS, McEvoy JP et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med.353(12), 1209–1223 (2005).
  • Lewis SW, Barnes TR, Davies L et al. Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophr. Bull.32(4), 715–723 (2006).
  • McEvoy JP, Lieberman JA, Stroup TS et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am. J. Psychiatry163(4), 600–610 (2006).
  • Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. Am. J. Psychiatry158(3), 360–369 (2001).
  • Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch. Gen. Psychiatry57(6), 553–559 (2000).
  • Remington G, Seeman P, Shammi C, Mann S, Kapur S. ‘Extended’ antipsychotic dosing: rationale and pilot data. J. Clin. Psychopharmacol.25(6), 611–613 (2005).
  • Uchida H, Mamo DC, Kapur S et al. Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. J. Clin. Psychiatry69(8), 1281–1286 (2008).
  • Wang L, Fang C, Zhang A et al. The -1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J. Psychopharmacol.22(8), 904–909 (2008).
  • Selemon LD, Begovic A, Goldman-Rakic PS, Castner SA. Amphetamine sensitization alters dendritic morphology in prefrontal cortical pyramidal neurons in the non-human primate. Neuropsychopharmacology32(4), 919–931 (2007).
  • Selemon LD, Begovic A, Williams GV, Castner SA. Reversal of neuronal and cognitive consequences of amphetamine sensitization following chronic treatment with a D1 antagonist. Pharmacol. Biochem. Behav.96(3), 325–332 (2010).
  • Castner SA, Vosler PS, Goldman-Rakic PS. Amphetamine sensitization impairs cognition and reduces dopamine turnover in primate prefrontal cortex. Biol. Psychiatry57(7), 743–751 (2005).
  • Meyer-Lindenberg A, Miletich RS, Kohn PD et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat. Neurosci.5(3), 267–271 (2002).
  • Keshavan MS, Anderson S, Pettegrew JW. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res.28(3), 239–265 (1994).
  • Lavin A, Moore HM, Grace AA. Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats. Neuropsychopharmacology30(8), 1426–1435 (2005).
  • Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology17(4), 205–229 (1997).
  • Lodge DJ, Grace AA. Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotox. Res.14(2–3), 97–104 (2008).
  • Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci.9(12), 947–957 (2008).
  • Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M. Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol. Psychiatry65(12), 1091–1093 (2009).
  • Lyon GJ, Abi-Dargham A, Moore H, Lieberman JA, Javitch JA, Sulzer D. Presynaptic regulation of dopamine transmission in schizophrenia. Schizophr. Bull.37(1), 108–117 (2011).
  • Abi-Dargham A. Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry2(3), 166–171 (2003).
  • Jay TM, Rocher C, Hotte M, Naudon L, Gurden H, Spedding M. Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotox. Res.6(3), 233–244 (2004).
  • Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc. Natl Acad. Sci. USA105(33), 11957–11962 (2008).
  • Cheer JF, Aragona BJ, Heien ML, Seipel AT, Carelli RM, Wightman RM. Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron54(2), 237–244 (2007).
  • Javitt DC. Glycine transport inhibitors and the treatment of schizophrenia. Biol. Psychiatry63(1), 6–8 (2008).
  • Roberts BM, Seymour PA, Schmidt CJ, Williams GV, Castner SA. Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl.)210(3), 407–418 (2010).
  • Chou YH, Halldin C, Farde L. Clozapine binds preferentially to cortical D1-like dopamine receptors in the primate brain: a PET study. Psychopharmacology (Berl.)185(1), 29–35 (2006).
  • Youngren KD, Inglis FM, Pivirotto PJ et al. Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology20(5), 403–412 (1999).
  • Chen L, Yang CR. Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J. Neurophysiol.87(5), 2324–2336 (2002).
  • Lidow MS, Elsworth JD, Goldman-Rakic PS. Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. J. Pharmacol. Exp. Ther.281(1), 597–603 (1997).
  • Daniel DG, Weinberger DR, Jones DW et al. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J. Neurosci.11(7), 1907–1917 (1991).
  • Goldberg TE, Bigelow LB, Weinberger DR, Daniel DG, Kleinman JE. Cognitive and behavioral effects of the coadministration of dextroamphetamine and haloperidol in schizophrenia. Am. J. Psychiatry148(1), 78–84 (1991).
  • Pietrzak RH, Snyder PJ, Maruff P. Use of an acute challenge with D-amphetamine to model cognitive improvement in chronic schizophrenia. Hum. Psychopharmacol.25(4), 353–358 (2010).
  • Bhattacharjee J, El-Sayeh HG. Aripiprazole versus typical antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev. (3), CD006617 (2008).
  • Grunder G, Fellows C, Janouschek H et al. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am. J. Psychiatry165(8), 988–995 (2008).
  • Janicak PG, Glick ID, Marder SR et al. The acute efficacy of aripiprazole across the symptom spectrum of schizophrenia: a pooled post hoc analysis from 5 short-term studies. J. Clin. Psychiatry70(1), 25–35 (2009).
  • Komossa K, Rummel-Kluge C, Schmid F et al. Aripiprazole versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. (4), CD006569 (2009).
  • Stip E, Tourjman V. Aripiprazole in schizophrenia and schizoaffective disorder: a review. Clin. Ther.32(Suppl. 1), S3–S20 (2010).
  • Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia-therapeutic implications. Biol. Psychiatry46(10), 1388–1395 (1999).
  • Carlsson ML, Carlsson A, Nilsson M. Schizophrenia: from dopamine to glutamate and back. Curr. Med. Chem.11(3), 267–277 (2004).
  • Mehta MA, Riedel WJ. Dopaminergic enhancement of cognitive function. Curr. Pharm. Des.12(20), 2487–2500 (2006).
  • Mu Q, Johnson K, Morgan PS et al. A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia. Schizophr. Res.94(1–3), 332–341 (2007).
  • Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr. Pharm. Des.15(22), 2550–2559 (2009).
  • Micheli F, Heidbreder C. Selective dopamine D3 receptor antagonists: a review 2001–2005. Recent Pat. CNS Drug Discov.1(3), 271–288 (2006).
  • Uchida H, Suzuki T, Takeuchi H, Arenovich T, Mamo DC. Low dose vs standard dose of antipsychotics for relapse prevention in schizophrenia: meta-analysis. Schizophr. Bull. DOI: 10.1093/schbul/sbp149 (2009) (Epub ahead of print).
  • Yamin S, Vaddadi K. Are we using excessive neuroleptics? An argument for systematic neuroleptic dose reduction in stable patients with schizophrenia with specific reference to clozapine. Int. Rev. Psychiatry22(2), 138–147 (2010).
  • Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S. D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology34(3), 662–671 (2009).
  • Samaha AN, Reckless GE, Seeman P, Diwan M, Nobrega JN, Kapur S. Less is more: antipsychotic drug effects are greater with transient rather than continuous delivery. Biol. Psychiatry64(2), 145–152 (2008).
  • Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S. ‘Breakthrough’ dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J. Neurosci.27(11), 2979–2986 (2007).
  • Carpenter WT Jr, Buchanan RW, Kirkpatrick B, Lann HD, Breier AF, Summerfelt AT. Comparative effectiveness of fluphenazine decanoate injections every 2 weeks versus every 6 weeks. Am. J. Psychiatry156(3), 412–418 (1999).
  • Mezler M, Geneste H, Gault L, Marek GJ. LY-2140023, a prodrug of the group II metabotropic glutamate receptor agonist LY-404039 for the potential treatment of schizophrenia. Curr. Opin. Investig. Drugs11(7), 833–845 (2010).
  • Bishara D, Taylor D. Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs68(16), 2269–2292 (2008).
  • Emsley R. Drugs in development for the treatment of schizophrenia. Expert Opin. Investig. Drugs18(8), 1103–1118 (2009).
  • McGlashan TH. Is active psychosis neurotoxic? Schizophr. Bull.32(4), 609–613 (2006).
  • Mihalopoulos C, Harris M, Henry L, Harrigan S, McGorry P. Is early intervention in psychosis cost-effective over the long term? Schizophr. Bull.35(5), 909–918 (2009).
  • Liu CC, Sheu YH, Wu SY, Lai MC, Hwu HG. Rapid response to antipsychotic treatment on psychotic prodrome: implications from a case series. Psychiatry Clin. Neurosci.64(2), 202–206 (2010).
  • McGorry PD, Nelson B, Amminger GP et al. Intervention in individuals at ultra high risk for psychosis: a review and future directions. J. Clin. Psychiatry70(9), 1206–1212 (2009).
  • Ruhrmann S, Schultze-Lutter F, Klosterkotter J. Intervention in the at-risk state to prevent transition to psychosis. Curr. Opin. Psychiatry22(2), 177–183 (2009).
  • Walker EF, Cornblatt BA, Addington J et al. The relation of antipsychotic and antidepressant medication with baseline symptoms and symptom progression: a naturalistic study of the North American Prodrome Longitudinal Sample. Schizophr. Res.115(1), 50–57 (2009).
  • Hashimoto K. Can the σ-1 receptor agonist fluvoxamine prevent schizophrenia? CNS Neurol. Disord. Drug Targets.8(6), 470–474 (2009).
  • Muller N, Myint AM, Schwarz MJ. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialogues Clin. Neurosci.11(3), 319–332 (2009).
  • Ritsner MS. Pregnenolone, dehydroepiandrosterone, and schizophrenia: alterations and clinical trials. CNS Neurosci. Ther.16(1), 32–44 (2010).
  • Bota RG, Sagduyu K, Filin EE, Bota DA, Munro S. Toward a better identification and treatment of schizophrenia prodrome. Bull. Menninger. Clin.72(3), 210–227 (2008).
  • Cannon TD, Cadenhead K, Cornblatt B et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch. Gen. Psychiatry65(1), 28–37 (2008).
  • Mitchell KJ, Porteous DJ. Rethinking the genetic architecture of schizophrenia. Psychol. Med.1–14 (2010).
  • Centorrino F, Ventriglio A, Vincenti A, Talamo A, Baldessarini RJ. Changes in medication practices for hospitalized psychiatric patients: 2009 versus 2004. Hum. Psychopharmacol.25(2), 179–186 (2010).
  • Wolff-Menzler C, Hasan A, Malchow B, Falkai P, Wobrock T. Combination therapy in the treatment of schizophrenia. Pharmacopsychiatry43(4), 122–129 (2010).
  • Zink M, Englisch S, Meyer-Lindenberg A. Polypharmacy in schizophrenia. Curr. Opin. Psychiatry23(2), 103–111 (2010).
  • Mouaffak F, Tranulis C, Gourevitch R et al. Augmentation strategies of clozapine with antipsychotics in the treatment of ultraresistant schizophrenia. Clin. Neuropharmacol.29(1), 28–33 (2006).
  • Remington G. Augmenting clozapine response in treatment-resistant schizophrenia. In: Therapy-Resistant Schizophrenia. Elkis H, Meltzer HY (Eds). Karger, Basel, 129–151 (2010).
  • Harvey PD, McClure MM. Pharmacological approaches to the management of cognitive dysfunction in schizophrenia. Drugs66(11), 1465–1473 (2006).
  • Dean B, Scarr E. Antipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr. Drug Targets CNS Neurol. Disord.3(3), 217–225 (2004).
  • Hoff AL, Faustman WO, Wieneke M et al. The effects of clozapine on symptom reduction, neurocognitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology15(4), 361–369 (1996).
  • Laughren T, Levin R. Food and Drug Administration perspective on negative symptoms in schizophrenia as a target for a drug treatment claim. Schizophr. Bull.32(2), 220–222 (2006).
  • Harvey PD. Pharmacological cognitive enhancement in schizophrenia. Neuropsychol. Rev.19(3), 324–335 (2009).
  • Livingstone PD, Srinivasan J, Kew JN et al. α7 and non-α7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur. J. Neurosci.29(3), 539–550 (2009).
  • Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD. Cognitive improvement by activation of α7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr. Pharm. Des.16(3), 323–343 (2010).
  • Wallace TL, Callahan PM, Tehim A et al. RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther.336(1), 242–253. (2011).
  • Gottesman, II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry160(4), 636–645 (2003).
  • Thaker GK. Schizophrenia endophenotypes as treatment targets. Expert Opin. Ther. Targets11(9), 1189–1206 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.