188
Views
23
CrossRef citations to date
0
Altmetric
Drug Profile

Fingolimod for the treatment of relapsing multiple sclerosis

, , , &
Pages 165-183 | Published online: 09 Jan 2014

References

  • Anderson DW, Ellenberg JH, Leventhal CM et al. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann. Neurol.31(3), 333–336 (1992).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Weinshenker BG, Bass B, Rice GP et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain112(Pt 1), 133–146 (1989).
  • Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology61(11), 1528–1532 (2003).
  • Bejaoui K, Rolak LA. What is the risk of permanent disability from a multiple sclerosis relapse? Neurology74(11), 900–902 (2010).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci.31, 247–269 (2008).
  • Scalfari A, Neuhaus A, Degenhardt A et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain133(Pt 7), 1914–1929 (2010).
  • Kappos L, Traboulsee A, Constantinescu C et al. Long-term subcutaneous interferon β-1a therapy in patients with relapsing–remitting MS. Neurology67(6), 944–953 (2006).
  • Avonex® (interferon β-1a) IM Injection. Prescribing Information. Biogen Idec Inc., Cambridge, MA, USA (2008).
  • Novantrone (mitoxantrone) Injection. Prescribing Information. EMD Serono, Inc., Rockland, MA, USA (2010).
  • Betaseron® (interferon β-1a) SC Injection. Prescribing Information. Bayer HealthCare Pharmaceuticals Inc., Montville, NJ, USA (2009).
  • Extavia® (interferon β-1b). Prescribing Information. Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (2009).
  • Copaxone® (glatiramer acetate) Injection. Prescribing Information. Teva Neuroscience, Inc., Kansas City, MO, USA (2009).
  • Río J, Montalban X. Interferon-β1b in the treatment of multiple sclerosis. Expert Opin. Pharmacother.6(16), 2877–2886 (2005).
  • Cohen JA, Barkhof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 402–415 (2010).
  • Carter NJ, Keating GM. Glatiramer acetate: a review of its use in relapsing–remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. Drugs70(12), 1545–1577 (2010).
  • Interferon β-1b is effective in relapsing–remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology43(4), 655–661 (1993).
  • Jacobs LD, Cookfair DL, Rudick RA et al. Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol.39(3), 285–294 (1996).
  • Johnson KP, Brooks BR, Cohen JA et al. Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a Phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology45(7), 1268–1276 (1995).
  • Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet352(9139), 1498–1504 (1998).
  • Stone LA, Frank JA, Albert PS et al. Characterization of MRI response to treatment with interferon β-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology49(3), 862–869 (1997).
  • Panitch H, Miller A, Paty D, Weinshenker B. Interferon β-1b in secondary progressive MS: results from a 3-year controlled study. Neurology63(10), 1788–1795 (2004).
  • Ford C, Goodman AD, Johnson K et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult. Scler.16(3), 342–350 (2010).
  • Zivadinov R, Reder AT, Filippi M et al. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology71(2), 136–144 (2008).
  • Treadaway K, Cutter G, Salter A et al. Factors that influence adherence with disease-modifying therapy in MS. J. Neurol.256(4), 568–576 (2009).
  • Clerico M, Barbero P, Contessa G, Ferrero C, Durelli L. Adherence to interferon-β treatment and results of therapy switching. J. Neurol. Sci.259(1–2), 104–108 (2007).
  • Hartung HP, Gonsette R, Konig N et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet360(9350), 2018–2025 (2002).
  • Marriott JJ, Miyasaki JM, Gronseth G, O’Connor PW. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology74(18), 1463–1470 (2010).
  • Rudick RA, Sandrock A. Natalizumab: α4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev. Neurother.4(4), 571–580 (2004).
  • Goodin DS, Cohen BA, O’Connor P, Kappos L, Stevens JC. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology71(10), 766–773 (2008).
  • Kappos L, Radue EW, O’Connor P et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med.362(5), 387–401 (2010).
  • Spiegel S, Milstien S. Sphingolipid metabolites: members of a new class of lipid second messengers. J. Membr. Biol.146(3), 225–237 (1995).
  • Spiegel S, Cuvillier O, Edsall LC et al. Sphingosine-1-phosphate in cell growth and cell death. Ann. N. Y. Acad. Sci.845, 11–18 (1998).
  • Hla T. Signaling and biological actions of sphingosine 1-phosphate. Pharmacol. Res.47(5), 401–407 (2003).
  • Lee MJ, Van Brocklyn JR, Thangada S et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science279(5356), 1552–1555 (1998).
  • Lee HY, Shin EH, Bae YS. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis. Acta Pharmacol. Sin.27(10), 1359–1366 (2006).
  • Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood102(10), 3665–3667 (2003).
  • Mizugishi K, Yamashita T, Olivera A et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol.25(24), 11113–11121 (2005).
  • Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem.73, 321–354 (2004).
  • Mandala S, Hajdu R, Bergstrom J et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science296(5566), 346–349 (2002).
  • Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J. Cell Biochem.92(5), 913–922 (2004).
  • Watterson K, Sankala H, Milstien S, Spiegel S. Pleiotropic actions of sphingosine-1-phosphate. Prog. Lipid Res.42(4), 344–357 (2003).
  • Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol.33(2), 91–101 (2010).
  • Chiba K, Yanagawa Y, Masubuchi Y et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol.160(10), 5037–5044 (1998).
  • Matloubian M, Lo CG, Cinamon G et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature427(6972), 355–360 (2004).
  • Yanagawa Y, Masubuchi Y, Chiba K. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats, III. Increase in frequency of CD62L-positive T cells in Peyer’s patches by FTY720-induced lymphocyte homing. Immunology95(4), 591–594 (1998).
  • Gräler MH, Goetzl EJ. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J.18(3), 551–553 (2004).
  • Mehling M, Lindberg RL, Kuhle J et al. Oral fingolimod (FTY720) treatment reduces peripheral IL-17-producing TH17 cells in patients with multiple sclerosis. Mult. Scler.14(1 Suppl.), S234(Abstract P697) (2008).
  • Tzartos JS, Friese MA, Craner MJ et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol.172(1), 146–155 (2008).
  • Kebir H, Kreymborg K, Ifergan I et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med.13(10), 1173–1175 (2007).
  • Mehling M, Lindberg R, Raulf F et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology75(5), 403–410 (2010).
  • Brinkmann V, Metzler B, Matloubian H. The mode of action of fingolimod (FTY720), an oral sphingosine 1-phosphate receptor modulator that is highly effective in human multiple slcerosis (Phase II). Mult. Scler.12, S100(Abstract P374) (2006).
  • Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am. J. Transplant.4(7), 1019–1025 (2004).
  • Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol.8(12), 1295–1301 (2007).
  • Pinschewer DD, Ochsenbein AF, Odermatt B et al. FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J. Immunol.164(11), 5761–5770 (2000).
  • Hofmann M, Brinkmann V, Zerwes HG. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int. Immunopharmacol.6(13–14), 1902–1910 (2006).
  • Schmouder R, Aradhye S, O’Connor P, Kappos L. Pharmacodynamic effects of oral fingolimod (FTY72). Mult. Scler.12(Suppl. 1), S101–S102 (Abstract P378) (2006).
  • Westermann J, Pabst R. Distribution of lymphocyte subsets and natural killer cells in the human body. Clin. Investig.70(7), 539–544 (1992).
  • Johnson TA, Shames I, Keezer M et al. Reconstitution of circulating lymphocyte counts in FTY720-treated MS patients. Clin. Immunol.137(1), 15–20 (2010).
  • Jung CG, Kim HJ, Miron VE et al. Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia55(16), 1656–1667 (2007).
  • Gardell S, Choi JW, Herr D et al. Evidence for neural S1P receptor signaling in EAE and FTY720 efficacy. Mult. Scler.13(2 Suppl.), S70(Abstract P243) (2007).
  • Saini HS, Coelho RP, Goparaju SK et al. Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. J. Neurochem.95(5), 1298–1310 (2005).
  • Novgorodov AS, El Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J.21(7), 1503–1514 (2007).
  • Miron VE, Jung CG, Kim HJ et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann. Neurol.63(1), 61–71 (2008).
  • Barske C, Osinde M, Mir AK et al. FTY720 (fingolimod) enhances the number of immature and mature oligodendrocytes. Mult. Scler.13(2 Suppl.), S148(Abstract P498) (2007).
  • Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther.323(2), 626–635 (2007).
  • Toman RE, Payne SG, Watterson KR et al. Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J. Cell Biol.166(3), 381–392 (2004).
  • Kimura A, Ohmori T, Ohkawa R et al. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells25(1), 115–124 (2007).
  • Edsall LC, Pirianov GG, Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci.17(18), 6952–6960 (1997).
  • Chin TY, Hwang HM, Chueh SH. Distinct effects of different calcium-mobilizing agents on cell death in NG108-15 neuroblastoma X glioma cells. Mol. Pharmacol.61(3), 486–494 (2002).
  • Shinpo K, Kikuchi S, Moriwaka F, Tashiro K. Protective effects of the TNF-ceramide pathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brain Res.819(1–2), 170–173 (1999).
  • Deogracias R, Klein C, Matsumoto T et al. Expression of brain-derived neurotrophic factor is regulated by fingolimod (FTY720) in cultured neurons. Mult. Scler.14(1 Suppl.), S243(Abstract P728) (2008).
  • Balatoni B, Storch MK, Swoboda EM et al. FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res. Bull.74(5), 307–316 (2007).
  • Giovannoni G, Al-Izki S, Pryce G, Jackson S, Baker D. Control of chronic relapsing progressive EAE with fingolimod. Presented at: 60th Annual Meeting of the American Academy of Neurology, Chicago, IL, USA, April 12–17, 2008 (Poster presentation).
  • Rao TS, Lariosa-Willingham KD, Lin FF et al. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res.990(1–2), 182–194 (2003).
  • Rao TS, Lariosa-Willingham KD, Lin FF et al. Growth factor pre-treatment differentially regulates phosphoinositide turnover downstream of lysophospholipid receptor and metabotropic glutamate receptors in cultured rat cerebrocortical astrocytes. Int. J. Dev. Neurosci.22(3), 131–135 (2004).
  • Mullershausen F, Craveiro LM, Shin Y et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J Neurochem102(4), 1151–1161 (2007).
  • Yamagata K, Tagami M, Torii Y et al. Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. Glia41(2), 199–206 (2003).
  • Osinde M, Mullershausen F, Dev KK. Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology52(5), 1210–1218 (2007).
  • Rouach N, Pébay A, Même W et al. S1P inhibits gap junctions in astrocytes: involvement of Gi and Rho GTPase/ROCK. Eur. J. Neurosci.23(6), 1453–1464 (2006).
  • Choi JW, Herr D, Kennedy G, Chun J. Astrocytic sphingosine 1-phosphate (S1P) receptor subtype 1 signalling influences levels of S1P and cytokines during experimental autoimmune encephalomyelitis and fingolimod (FTY720) intervention. Mult. Scler.15, S58(Abstract P227) (2009).
  • Kappos L, Antel J, Comi G et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med.355(11), 1124–1140 (2006).
  • O’Connor P, Comi G, Montalban X et al. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a Phase II extension study. Neurology72(1), 73–79 (2009).
  • Comi G, O’Connor P, Montalban X et al. Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult. Scler.16(2), 197–207 (2010).
  • Tysabri (natalizumab) Injection. Prescribing Information. Biogen Idec Inc., Cambridge, MA, USA (2008).
  • Neutralizing antibodies during treatment of multiple sclerosis with interferon β-1b: experience during the first three years. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neurology47(4), 889–894 (1996).
  • PRISMS-4: Long-term efficacy of interferon-β-1a in relapsing MS. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Neurology56(12), 1628–1636 (2001).
  • Francis GS, Rice GP, Alsop JC. Interferon β-1a in MS: results following development of neutralizing antibodies in PRISMS. Neurology65(1), 48–55 (2005).
  • Pachner AR, Warth JD, Pace A, Goelz S. Effect of neutralizing antibodies on biomarker responses to interferon β: the INSIGHT study. Neurology73(18), 1493–1500 (2009).
  • Calabresi PA, Giovannoni G, Confavreux C et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology69(14), 1391–1403 (2007).
  • Giovannoni G, Barbarash O, Casset-Semanaz F et al. Safety and immunogenicity of a new formulation of interferon β-1a (Rebif New Formulation) in a Phase IIIb study in patients with relapsing multiple sclerosis: 96-week results. Mult. Scler.15(2), 219–228 (2009).
  • Foster CA, Howard LM, Schweitzer A et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J. Pharmacol. Exp. Ther.323(2), 469–475 (2007).
  • Gilenya™ (fingolimod) Capsules for Oral Use. Prescribing Information. Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (2010).
  • The Merck Manual of Diagnosis and Therapy. Merck Research Laboratory, Whitehouse Station, NJ, USA (2006).
  • Uhlig S, Gulbins E. Sphingolipids in the lungs. Am. J. Respir. Crit. Care Med.178(11), 1100–1114 (2008).
  • Salvadori M, Budde K, Charpentier B et al. FTY720 versus MMF with cyclosporine in de novo renal transplantation: a 1-year, randomized controlled trial in Europe and Australasia. Am. J. Transplant.6(12), 2912–2921 (2006).
  • Tedesco-Silva H, Pescovitz MD, Cibrik D et al. Randomized controlled trial of FTY720 versus MMF in de novo renal transplantation. Transplantation82(12), 1689–1697 (2006).
  • Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. Ther.115(1), 84–105 (2007).
  • Chen E, Looman M, Laouri M et al. Burden of illness of diabetic macular edema: literature review. Curr. Med. Res. Opin.26(7), 1587–1597 (2010).
  • Markomichelakis NN, Halkiadakis I, Pantelia E et al. Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology111(5), 946–953 (2004).
  • Portaccio E, Zipoli V, Siracusa G, Sorbi S, Amato MP. Long-term adherence to interferon β therapy in relapsing–remitting multiple sclerosis. Eur. Neurol.59(3–4), 131–135 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.