356
Views
85
CrossRef citations to date
0
Altmetric
Review

Current therapeutic targets for the treatment of Alzheimer’s disease

&
Pages 711-728 | Published online: 09 Jan 2014

References

  • Rogers SL, Doody RS, Mohs RC, Friedhoff LT. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch. Intern. Med.158(9), 1021–1031 (1998).
  • Rogers SL, Doody RS, Pratt RD, Ieni JR. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label study. Eur. Neuropsychopharmacol.10(3), 195–203 (2000).
  • Tariot PN, Cummings JL, Katz IR et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J. Am. Geriatr. Soc.49(12), 1590–1599 (2001).
  • Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology54(12), 2269–2276 (2000).
  • Rosler M, Anand R, Cicin-Sain A et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. Br. Med. J.318(7184), 633–638 (1999).
  • Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology54(12), 2261–2268 (2000).
  • Farlow M, Anand R, Messina J Jr, Hartman R, Veach J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol.44(4), 236–241 (2000).
  • Winblad B, Kilander L, Eriksson S et al. Donepezil in patients with severe Alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet367(9516), 1057–1065 (2006).
  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA291(3), 317–324 (2004).
  • van Dyck CH, Tariot PN, Meyers B, Malca Resnick E. A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease. Alzheimer Dis. Assoc. Disord.21(2), 136–143 (2007).
  • Lopez OL, Becker JT, Wahed AS et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry80(6), 600–607 (2009).
  • Atri A, Shaughnessy LW, Locascio JJ, Growdon JH. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis. Assoc. Disord.22(3), 209–221 (2008).
  • Nordberg A, Winblad B. Reduced number of [3H] nicotine and [3H] acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett.72(1), 115–119 (1986).
  • Sabbagh MN, Shah F, Reid RT et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch. Neurol.63(12), 1771–1776 (2006).
  • Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl.)188(4), 509–520 (2006).
  • Mazurov A, Hauser T, Miller CH. Selective α7 nicotinic acetylcholine receptor ligands. Curr. Med. Chem.13(13), 1567–1584 (2006).
  • Haydar SN, Ghiron C, Bettinetti L et al. SAR and biological evaluation of SEN12333/WAY-317538: novel α 7 nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem.17(14), 5247–5258 (2009).
  • Dunbar GC, Kuchibhatla R. Cognitive enhancement in man with ispronicline, a nicotinic partial agonist. J. Mol. Neurosci.30(1–2), 169–172 (2006).
  • Potter A, Corwin J, Lang J, Piasecki M, Lenox R, Newhouse PA. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology (Berl.)142(4), 334–342 (1999).
  • Marighetto A, Valerio S, Desmedt A, Philippin JN, Trocme-Thibierge C, Morain P. Comparative effects of the a7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology (Berl.)197(3), 499–508 (2008).
  • Rissman RA, De Blas AL, Armstrong DM. GABA(A) receptors in aging and Alzheimer’s disease. J. Neurochem.103(4), 1285–1292 (2007).
  • Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain105(Pt 2), 313–330 (1982).
  • Mountjoy CQ, Rossor MN, Iversen LL, Roth M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain107(Pt 2), 507–518 (1984).
  • Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM. γ-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain111(Pt 4), 785–799 (1988).
  • Ellison DW, Beal MF, Mazurek MF, Bird ED, Martin JB. A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol.20(5), 616–621 (1986).
  • Chu DC, Penney JB Jr, Young AB. Cortical GABAB and GABAA receptors in Alzheimer’s disease: a quantitative autoradiographic study. Neurology37(9), 1454–1459 (1987).
  • Froestl W, Gallagher M, Jenkins H et al. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem. Pharmacol.68(8), 1479–1487 (2004).
  • Sabbagh MN. Drug development for Alzheimer’s disease: where are we now and where are we headed? Am. J. Geriatr. Pharmacother.7(3), 167–185 (2009).
  • Sternfeld F, Carling RW, Jelley RA et al. Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem.47(9), 2176–2179 (2004).
  • Aisen PS, Saumier D, Briand R et al. A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology67(10), 1757–1763 (2006).
  • King MV, Marsden CA, Fone KC. A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci.12(9), 482–492 (2008).
  • Kepe V, Barrio JR, Huang SC et al. Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc. Natl Acad. Sci. USA103(3), 702–707 (2006).
  • Truchot L, Costes SN, Zimmer L et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology69(10), 1012–1017 (2007).
  • Reynolds GP, Mason SL, Meldrum A et al. 5-hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol.114(5), 993–998 (1995).
  • Lorke DE, Lu G, Cho E, Yew DT. Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci.7, 36 (2006).
  • Lai MK, Tsang SW, Alder JT et al. Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology (Berl.)179(3), 673–677 (2005).
  • Verdurand M, Berod A, Le Bars D, Zimmer L. Effects of amyloid-β peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus. Neurobiol. Aging DOI: 10.1016/j.neurobiolaging. 2009.01.008 (2009) (Epub ahead of print).
  • Hasselbalch SG, Madsen K, Svarer C et al. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol. Aging29(12), 1830–1838 (2008).
  • Elliott MS, Ballard CG, Kalaria RN, Perry R, Hortobagyi T, Francis PT. Increased binding to 5-HT1A and 5-HT2A receptors is associated with large vessel infarction and relative preservation of cognition. Brain132(Pt 7), 1858–1865 (2009).
  • Carli M, Balducci C, Samanin R. Stimulation of 5-HT1A receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology (Berl.)158(1), 39–47 (2001).
  • Fontana DJ, Daniels SE, Wong EH, Clark RD, Eglen RM. The effects of novel, selective 5-hydroxytryptamine (5-HT)4 receptor ligands in rat spatial navigation. Neuropharmacology36(4–5), 689–696 (1997).
  • Harder JA, Maclean CJ, Alder JT, Francis PT, Ridley RM. The 5-HT1A antagonist, WAY 100635, ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacology (Berl.)127(3), 245–254 (1996).
  • Schechter LE, Smith DL, Rosenzweig-Lipson S et al. Lecozotan (SRA-333): a selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Pharmacol. Exp. Ther.314(3), 1274–1289 (2005).
  • Foley AG, Murphy KJ, Hirst WD et al. The 5-HT6 receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology29(1), 93–100 (2004).
  • Da Silva Costa V, Duchatelle P, Boulouard M, Dauphin F. Selective 5-HT6 receptor blockade improves spatial recognition memory and reverses age-related deficits in spatial recognition memory in the mouse. Neuropsychopharmacology34(2), 488–500 (2009).
  • Patat A, Parks V, Raje S, Plotka A, Chassard D, Le Coz F. Safety, tolerability, pharmacokinetics and pharmacodynamics of ascending single and multiple doses of lecozotan in healthy young and elderly subjects. Br. J. Clin. Pharmacol.67(3), 299–308 (2009).
  • Upton N, Chuang TT, Hunter AJ, Virley DJ. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics5(3), 458–469 (2008).
  • Lovenberg TW, Roland BL, Wilson SJ et al. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol.55(6), 1101–1107 (1999).
  • Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol.154(6), 1166–1181 (2008).
  • Medhurst AD, Roberts JC, Lee J et al. Characterization of histamine H3 receptors in Alzheimer’s disease brain and amyloid over-expressing TASTPM mice. Br. J. Pharmacol.157(1), 130–138 (2009).
  • Leurs R, Bakker RA, Timmerman H, de Esch IJ. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat. Rev. Drug Discov.4(2), 107–120 (2005).
  • Tully T, Bourtchouladze R, Scott R, Tallman J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov.2(4), 267–277 (2003).
  • Barco A, Pittenger C, Kandel ER. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin. Ther. Targets7(1), 101–114 (2003).
  • Vitolo OV, Sant’ Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl Acad. Sci. USA99(20), 13217–13221 (2002).
  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp. Neurol.203(1), 241–245 (2007).
  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest.114(11), 1624–1634 (2004).
  • Puzzo D, Staniszewski A, Deng SX et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer’s disease mouse model. J. Neurosci.29(25), 8075–8086 (2009).
  • Xia M, Huang R, Guo V et al. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc. Natl Acad. Sci. USA106(7), 2412–2417 (2009).
  • Schultheiss D, Muller SV, Nager W et al. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: a study with event-related brain potentials. World J. Urol.19(1), 46–50 (2001).
  • Langbaum JB, Chen K, Lee W et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage45(4), 1107–1116 (2009).
  • Reiman EM, Caselli RJ, Yun LS et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. N. Engl. J. Med.334(12), 752–758 (1996).
  • Manning CA, Stone WS, Korol DL, Gold PE. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav. Brain Res.93(1–2), 71–76 (1998).
  • Craft S, Asthana S, Newcomer JW et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry56(12), 1135–1140 (1999).
  • Costantini LC, Barr LJ, Vogel JL, Henderson ST. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci.9(Suppl. 2), S16 (2008).
  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.)6, 31 (2009).
  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol.61(5), 661–666 (2004).
  • Qiu WQ, Walsh DM, Ye Z et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem.273(49), 32730–32738 (1998).
  • Vekrellis K, Ye Z, Qiu WQ et al. Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. J. Neurosci.20(5), 1657–1665 (2000).
  • Risner ME, Saunders AM, Altman JF et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J.6(4), 246–254 (2006).
  • Gold M, Alderton C, Zvartau-Hind M et al. Effects of rosiglitazone as a monotherapy in apoe4-stratified subjects with mild-to-moderate Alzheimer’s disease. Alzheimer’s Dement.5(4), P86 (2009) (Poster O1-04-06).
  • Reger MA, Watson GS, Green PS et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology70(6), 440–448 (2008).
  • Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron6(4), 487–498 (1991).
  • Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem.110(4), 1129–1134 (2009).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science256(5054), 184–185 (1992).
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120(3), 885–890 (1984).
  • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem.283(44), 29615–29619 (2008).
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci.8(7), 499–509 (2007).
  • Shankar GM, Li S, Mehta TH et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med.14(8), 837–842 (2008).
  • Ringman JM. What the study of persons at risk for familial Alzheimer’s disease can tell us about the earliest stages of the disorder: a review. J. Geriatr. Psychiatry Neurol.18(4), 228–233 (2005).
  • Rogaeva E, Kawarai T, George-Hyslop PS. Genetic complexity of Alzheimer’s disease: successes and challenges. J. Alzheimers Dis.9(3 Suppl.), 381–387 (2006).
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet368(9533), 387–403 (2006).
  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci.11(10), 3218–3226 (1991).
  • Anagnostaras SG, Murphy GG, Hamilton SE et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci.6(1), 51–58 (2003).
  • Fisher A, Pittel Z, Haring R et al. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J. Mol. Neurosci.20(3), 349–356 (2003).
  • Caccamo A, Oddo S, Billings LM et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron49(5), 671–682 (2006).
  • Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther.117(2), 232–243 (2008).
  • Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH. The selective muscarinic M1 agonist AF102B decreases levels of total Aβ in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol.48(6), 913–918 (2000).
  • Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol.51(6), 783–786 (2002).
  • Yang LB, Lindholm K, Yan R et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med.9(1), 3–4 (2003).
  • Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol.59(9), 1381–1389 (2002).
  • Luo Y, Bolon B, Kahn S et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci.4(3), 231–232 (2001).
  • Roberds SL, Anderson J, Basi G et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet.10(12), 1317–1324 (2001).
  • Ghosh AK, Kumaragurubaran N, Hong L et al. Design, synthesis, and x-ray structure of potent memapsin 2 (β-secretase) inhibitors with isophthalamide derivatives as the P2-P3-ligands. J. Med. Chem.50(10), 2399–2407 (2007).
  • Ghosh AK, Gemma S, Tang J. β-secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics5(3), 399–408 (2008).
  • Wolfe MS. Inhibition and modulation of γ-secretase for Alzheimer’s disease. Neurotherapeutics5(3), 391–398 (2008).
  • Wong PC, Zheng H, Chen H et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature387(6630), 288–292 (1997).
  • Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci.7(2), 93–102 (2006).
  • Lai EC. Notch signaling: control of cell communication and cell fate. Development131(5), 965–973 (2004).
  • Lathia JD, Mattson MP, Cheng A. Notch: from neural development to neurological disorders. J. Neurochem.107(6), 1471–1481 (2008).
  • Golde TE, Kukar TL. Medicine. Avoiding unintended toxicity. Science324(5927), 603–604 (2009).
  • Siemers ER, Dean RA, Friedrich S et al. Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-β after inhibition of γ-secretase. Clin. Neuropharmacol.30(6), 317–325 (2007).
  • Siemers ER, Quinn JF, Kaye J et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology66(4), 602–604 (2006).
  • Imbimbo BP. Therapeutic potential of γ-secretase inhibitors and modulators. Curr. Top. Med. Chem.8(1), 54–61 (2008).
  • Fleisher AS, Raman R, Siemers ER et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol.65(8), 1031–1038 (2008).
  • Bateman RJ, Siemers ER, Mawuenyega KG et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol.66(1), 48–54 (2009).
  • Albright C, Dockens R, Olson R et al. BMS-708163, a potent and selective γ-secretase inhibitor, decreases CSF Aβ at safe and tolerable doses in animals and humans. Program and Abstracts of the International Conference on Alzheimer’s Disease. Chicago, IL, USA, 26–31 July 2008 (Abstract HT-01-05).
  • Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414(6860), 212–216 (2001).
  • Weggen S, Eriksen JL, Sagi SA et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid β 42 production by direct modulation of γ-secretase activity. J. Biol. Chem.278(34), 31831–31837 (2003).
  • Hendrix SB, Wilcock GK. What we have learned from the Myriad trials. J. Nutr. Health Aging13(4), 362–364 (2009).
  • Green RC, Schneider LS, Amato DA et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA302(23), 2557–2564 (2009).
  • Clarke EE, Churcher I, Ellis S et al. Intra- or intercomplex binding to the γ-secretase enzyme. A model to differentiate inhibitor classes. J. Biol. Chem.281(42), 31279–31289 (2006).
  • Kukar TL, Ladd TB, Bann MA et al. Substrate-targeting γ-secretase modulators. Nature453(7197), 925–929 (2008).
  • Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer’s Aβ peptide: the many roads to perdition. Neuron43(5), 605–608 (2004).
  • Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J.11(5), 355–364 (1997).
  • Iwata N, Tsubuki S, Takaki Y et al. Identification of the major Aβ1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med.6(2), 143–150 (2000).
  • Eckman EA, Adams SK, Troendle FJ et al. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem.281(41), 30471–30478 (2006).
  • Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J. Biol. Chem.276(27), 24540–24548 (2001).
  • Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res.5(2), 212–224 (2008).
  • Yasojima K, McGeer EG, McGeer PL. Relationship between β amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res.919(1), 115–121 (2001).
  • Farris W, Mansourian S, Chang Y et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA100(7), 4162–4167 (2003).
  • Meilandt WJ, Cisse M, Ho K et al. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Aβ oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J. Neurosci.29(7), 1977–1986 (2009).
  • Leissring MA, Farris W, Chang AY et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron40(6), 1087–1093 (2003).
  • Poirier R, Wolfer DP, Welzl H et al. Neuronal neprilysin overexpression is associated with attenuation of Aβ-related spatial memory deficit. Neurobiol. Dis.24(3), 475–483 (2006).
  • Iwata N, Mizukami H, Shirotani K et al. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-β peptide in mouse brain. J. Neurosci.24(4), 991–998 (2004).
  • Marr RA, Rockenstein E, Mukherjee A et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci.23(6), 1992–1996 (2003).
  • Saito T, Iwata N, Tsubuki S et al. Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat. Med.11(4), 434–439 (2005).
  • Cabrol C, Huzarska MA, Dinolfo C et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS One4(4), e5274 (2009).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400(6740), 173–177 (1999).
  • Morgan D, Diamond DM, Gottschall PE et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature408(6815), 982–985 (2000).
  • Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP, Colton CA. Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J. Neurosci.29(25), 7957–7965 (2009).
  • Orgogozo JM, Gilman S, Dartigues JF et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology61(1), 46–54 (2003).
  • Hock C, Konietzko U, Streffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron38(4), 547–554 (2003).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology64(9), 1553–1562 (2005).
  • Vellas B, Black R, Thal LJ et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res.6(2), 144–151 (2009).
  • Holmes C, Boche D, Wilkinson D et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet372(9634), 216–223 (2008).
  • Masliah E, Hansen L, Adame A et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology64(1), 129–131 (2005).
  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med.9(4), 448–452 (2003).
  • St George-Hyslop PH, Morris JC. Will anti-amyloid therapies work for Alzheimer’s disease? Lancet372(9634), 180–182 (2008).
  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43(3), 321–332 (2004).
  • Hartman RE, Izumi Y, Bales KR, Paul SM, Wozniak DF, Holtzman DM. Treatment with an amyloid-β antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. J. Neurosci.25(26), 6213–6220 (2005).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Koenigsknecht-Talboo J, Meyer-Luehmann M, Parsadanian M et al. Rapid microglial response around amyloid pathology after systemic anti-Aβ antibody administration in PDAPP mice. J. Neurosci.28(52), 14156–14164 (2008).
  • Wilcock DM, DiCarlo G, Henderson D et al. Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci.23(9), 3745–3751 (2003).
  • Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D. Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol. Dis.15(1), 11–20 (2004).
  • Takata K, Hirata-Fukae C, Becker AG et al. Deglycosylated anti-amyloid β antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid β sequestration. Eur. J. Neurosci.26(9), 2458–2468 (2007).
  • Wilcock DM, Rojiani A, Rosenthal A et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J. Neurosci.24(27), 6144–6151 (2004).
  • Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE. Amyloid-β immunization effectively reduces amyloid deposition in FcRγ-/- knock-out mice. J. Neurosci.23(24), 8532–8538 (2003).
  • Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M. Autoantibodies against β-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann. Neurol.65(1), 24–31 (2009).
  • Relkin NR, Szabo P, Adamiak B et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging30(11), 1728–1736. (2008).
  • Ladu MJ, Reardon C, Van Eldik L et al. Lipoproteins in the central nervous system. Ann. NY Acad. Sci.903, 167–175 (2000).
  • Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science261(5123), 921–923 (1993).
  • Schmechel DE, Saunders AM, Strittmatter WJ et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA90(20), 9649–9653 (1993).
  • Reiman EM, Chen K, Liu X et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA106(16), 6820–6825 (2009).
  • Fan J, Donkin J, Wellington C. Greasing the wheels of Aβ clearance in Alzheimer’s disease: The role of lipids and apolipoprotein E. Biofactors35(3), 239–248 (2009).
  • Martel CL, Mackic JB, Matsubara E et al. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer’s amyloid β. J. Neurochem.69(5), 1995–2004 (1997).
  • Bales KR, Verina T, Dodel RC et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet.17(3), 263–264 (1997).
  • Sadowski MJ, Pankiewicz J, Scholtzova H et al. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer’s disease. Proc. Natl Acad. Sci. USA103(49), 18787–18792 (2006).
  • Zlokovic BV. Clearing amyloid through the blood–brain barrier. J. Neurochem.89(4), 807–811 (2004).
  • Shibata M, Yamada S, Kumar SR et al. Clearance of Alzheimer’s amyloid-ss1–40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest.106(12), 1489–1499 (2000).
  • Deane R, Wu Z, Sagare A et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron43(3), 333–344 (2004).
  • Sagare A, Deane R, Bell RD et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat. Med.13(9), 1029–1031 (2007).
  • Brett J, Schmidt AM, Yan SD et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol.143(6), 1699–1712 (1993).
  • Lue LF, Walker DG, Brachova L et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol.171(1), 29–45 (2001).
  • Sasaki N, Toki S, Chowei H et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res.888(2), 256–262 (2001).
  • Yan SD, Chen X, Fu J et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature382(6593), 685–691 (1996).
  • Deane R, Du Yan S, Submamaryan RK et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med.9(7), 907–913 (2003).
  • Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B. Clearance of amyloid β-peptide from brain: transport or metabolism? Nat. Med.6(7), 718 (2000).
  • Lesne S, Koh MT, Kotilinek L et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440(7082), 352–357 (2006).
  • Cheng IH, Scearce-Levie K, Legleiter J et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem.282(33), 23818–23828 (2007).
  • Cleary JP, Walsh DM, Hofmeister JJ et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci.8(1), 79–84 (2005).
  • Head E, Pop V, Vasilevko V et al. A two-year study with fibrillar β-amyloid (Aβ) immunization in aged canines: effects on cognitive function and brain Aβ. J. Neurosci.28(14), 3555–3566 (2008).
  • Yan P, Bero AW, Cirrito JR et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci.29(34), 10706–10714 (2009).
  • Burdick D, Soreghan B, Kwon M et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J. Biol. Chem.267(1), 546–554 (1992).
  • Podlisny MB, Ostaszewski BL, Squazzo SL et al. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem.270(16), 9564–9570 (1995).
  • Harmeier A, Wozny C, Rost BR et al. Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity. J. Neurosci.29(23), 7582–7590 (2009).
  • Walsh DM, Townsend M, Podlisny MB et al. Certain inhibitors of synthetic amyloid β-peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J. Neurosci.25(10), 2455–2462 (2005).
  • Necula M, Kayed R, Milton S, Glabe CG. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem.282(14), 10311–10324 (2007).
  • Necula M, Breydo L, Milton S et al. Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry46(30), 8850–8860 (2007).
  • McLaurin J, Franklin T, Chakrabartty A, Fraser PE. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-β fibril growth and arrest. J. Mol. Biol.278(1), 183–194 (1998).
  • Townsend M, Cleary JP, Mehta T et al. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann. Neurol.60(6), 668–676 (2006).
  • McLaurin J, Kierstead ME, Brown ME et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med.12(7), 801–808 (2006).
  • Wang J, Ho L, Zhao W et al. Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J. Neurosci.28(25), 6388–6392 (2008).
  • Ono K, Condron MM, Ho L et al. Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J. Biol. Chem.283(47), 32176–32187 (2008).
  • Ma QL, Yang F, Rosario ER et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci.29(28), 9078–9089 (2009).
  • Cole GM, Lim GP, Yang F et al. Prevention of Alzheimer’s disease: omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging26(Suppl. 1), 133–136 (2005).
  • Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci.9(Suppl. 2), S6 (2008).
  • Barberger-Gateau P, Letenneur L, Deschamps V, Peres K, Dartigues JF, Renaud S. Fish, meat, and risk of dementia: cohort study. Br. Med. J.325(7370), 932–933 (2002).
  • Morris MC, Evans DA, Bienias JL et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol.60(7), 940–946 (2003).
  • Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R. Alcohol intake and risk of dementia. J. Am. Geriatr. Soc.52(4), 540–546 (2004).
  • Schaefer EJ, Bongard V, Beiser AS et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol.63(11), 1545–1550 (2006).
  • Chandra V, Ganguli M, Pandav R, Johnston J, Belle S, DeKosky ST. Prevalence of Alzheimer’s disease and other dementias in rural India: the Indo–US study. Neurology51(4), 1000–1008 (1998).
  • Chandra V, Pandav R, Dodge HH et al. Incidence of Alzheimer’s disease in a rural community in India: the Indo–US study. Neurology57(6), 985–989 (2001).
  • Lim GP, Calon F, Morihara T et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci.25(12), 3032–3040 (2005).
  • Green KN, Martinez-Coria H, Khashwji H et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-β and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci.27(16), 4385–4395 (2007).
  • Wang J, Ho L, Zhao Z et al. Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J.20(13), 2313–2320 (2006).
  • Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics5(3), 421–432 (2008).
  • Bush AI, Pettingell WH Jr, Paradis MD, Tanzi RE. Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J. Biol. Chem.269(16), 12152–12158 (1994).
  • Bush AI, Pettingell WH, Multhaup G et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science265(5177), 1464–1467 (1994).
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci.158(1), 47–52 (1998).
  • Suh SW, Jensen KB, Jensen MS et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res.852(2), 274–278 (2000).
  • Ibach B, Haen E, Marienhagen J, Hajak G. Clioquinol treatment in familiar early onset of Alzheimer’s disease: a case report. Pharmacopsychiatry38(4), 178–179 (2005).
  • Lannfelt L, Blennow K, Zetterberg H et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a Phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol.7(9), 779–786 (2008).
  • Ritchie CW, Bush AI, Mackinnon A et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot Phase 2 clinical trial. Arch. Neurol.60(12), 1685–1691 (2003).
  • Cahoon L. The curious case of clioquinol. Nat. Med.15(4), 356–359 (2009).
  • Wang Y, Branicky R, Stepanyan Z et al. The anti-neurodegeneration drug clioquinol inhibits the aging-associated protein CLK-1. J. Biol. Chem.284(1), 314–323 (2009).
  • Bradke F, Dotti CG. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol.10(5), 574–581 (2000).
  • Lee VM, Trojanowski JQ. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol.2(5), 653–656 (1992).
  • Clark CM, Xie S, Chittams J et al. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol.60(12), 1696–1702 (2003).
  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology42(3 Pt 1), 631–639 (1992).
  • Tariot PN, Aisen PS. Can lithium or valproate untie tangles in Alzheimer’s disease? J. Clin. Psychiatry70(6), 919–921 (2009).
  • Roberson ED, Scearce-Levie K, Palop JJ et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science316(5825), 750–754 (2007).
  • Santacruz K, Lewis J, Spires T et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309(5733), 476–481 (2005).
  • Makrides V, Shen TE, Bhatia R et al. Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J. Biol. Chem.278(35), 33298–33304 (2003).
  • Crowe A, Huang W, Ballatore C et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry48(32), 7732–7745 (2009).
  • Wischik C, Staff R. Challenges in the conduct of disease-modifying trials in AD: practical experience from a Phase 2 trial of tau-aggregation inhibitor therapy. J. Nutr. Health Aging13(4), 367–369 (2009).
  • Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA93(20), 11213–11218 (1996).
  • Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol. Biol. Cell18(12), 5060–5068 (2007).
  • Schneider A, Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics5(3), 443–457 (2008).
  • Illenberger S, Zheng-Fischhofer Q, Preuss U et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol. Biol. Cell9(6), 1495–1512 (1998).
  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural Transm.112(6), 813–838 (2005).
  • Wen Y, Planel E, Herman M et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci.28(10), 2624–2632 (2008).
  • Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem.281(35), 25457–25465 (2006).
  • Leyhe T, Eschweiler GW, Stransky E et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J. Alzheimers Dis.16(3), 649–656 (2009).
  • Porsteinsson AP, Tariot PN, Jakimovich LJ et al. Valproate therapy for agitation in dementia: open-label extension of a double-blind trial. Am. J. Geriatr. Psychiatry11(4), 434–440 (2003).
  • Porsteinsson AP, Tariot PN, Erb R, Gaile S. An open trial of valproate for agitation in geriatric neuropsychiatric disorders. Am. J. Geriatr. Psychiatry5(4), 344–351 (1997).
  • Hampel H, Ewers M, Burger K et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry70(6), 922–931 (2009).
  • Tariot PN, Aisen P, Cummings J et al. The ADCS valproate neuroprotection trial: primary efficacy and safety results. Alzheimer’s Dement.5(4) P84–P85 (2009).
  • Arendash GW, Mori T, Cao C et al. Caffeine reverses cognitive impairment and decreases brain amyloid-β levels in aged Alzheimer’s disease mice. J. Alzheimers Dis.17(3), 661–680 (2009).
  • Maia L, de Mendonca A. Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol.9(4), 377–382 (2002).
  • Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J. Alzheimers Dis.16(1), 85–91 (2009).
  • Arendash GW, Schleif W, Rezai-Zadeh K et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience142(4), 941–952 (2006).
  • Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM. PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp. Neurol.168(2), 402–412 (2001).
  • Sontag E, Luangpirom A, Hladik C et al. Altered expression levels of the protein phosphatase 2A ABαC enzyme are associated with Alzheimer disease pathology. J. Neuropathol. Exp. Neurol.63(4), 287–301 (2004).
  • Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J. Neurochem.65(2), 732–738 (1995).
  • Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J. Biol. Chem.276(41), 38193–38200 (2001).
  • Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U. Paired helical filament-like phosphorylation of tau, deposition of β/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience69(3), 691–698 (1995).
  • Iqbal K, Alonso Adel C, El-Akkad E et al. Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci.19(1–2), 95–99 (2002).
  • Tanimukai H, Kudo T, Tanaka T, Grundke-Iqbal I, Iqbal K, Takeda M. Novel therapeutic strategies for neurodegenerative disease. Psychogeriatrics9(2), 103–109 (2009).
  • Gozes I, Morimoto BH, Tiong J et al. NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev.11(4), 353–368 (2005).
  • Divinski I, Mittelman L, Gozes I. A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J. Biol. Chem.279(27), 28531–28538 (2004).
  • Hashimoto Y, Kaneko Y, Tsukamoto E et al. Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-β peptides via p75NTR/PLAIDD. J. Neurochem.90(3), 549–558 (2004).
  • Gozes I, Divinski I. The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J. Alzheimers Dis.6(6 Suppl.), S37–S41 (2004).
  • Matsuoka Y, Gray AJ, Hirata-Fukae C et al. Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J. Mol. Neurosci.31(2), 165–170 (2007).
  • Matsuoka Y, Jouroukhin Y, Gray AJ et al. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther.325(1), 146–153 (2008).
  • Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther.293(3), 1091–1098 (2000).
  • Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem.281(51), 39413–39423 (2006).
  • Mendez MF. Frontotemporal dementia: therapeutic interventions. Front. Neurol. Neurosci.24, 168–178 (2009).
  • Strong MJ, Yang W, Strong WL, Leystra-Lantz C, Jaffe H, Pant HC. Tau protein hyperphosphorylation in sporadic ALS with cognitive impairment. Neurology66(11), 1770–1771 (2006).
  • McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology47(2), 425–432 (1996).
  • Szekely CA, Breitner JC, Fitzpatrick AL et al. NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology70(1), 17–24 (2008).
  • Dufouil C, Richard F, Fievet N et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology64(9), 1531–1538 (2005).
  • Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J. Neurol. Neurosurg. Psychiatry80(1), 13–17 (2009).
  • Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol.126(1), 88–94 (1994).
  • Aisen PS, Schafer KA, Grundman M et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA289(21), 2819–2826 (2003).
  • Martin BK, Szekely C, Brandt J et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol.65(7), 896–905 (2008).
  • Group AR, Lyketsos CG, Breitner JC et al. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology68(21), 1800–1808 (2007).
  • Meinert CL, Breitner JC. Chronic disease long-term drug prevention trials: lessons from the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Alzheimers Dement.4(1 Suppl. 1), S7–S14 (2008).
  • Arvanitakis Z, Schneider JA, Wilson RS et al. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology70(19 Pt 2), 1795–1802 (2008).
  • Rea TD, Breitner JC, Psaty BM et al. Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch. Neurol.62(7), 1047–1051 (2005).
  • Li G, Larson EB, Sonnen JA et al. Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology69(9), 878–885 (2007).
  • Sparks DL, Sabbagh MN, Connor DJ et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch. Neurol.62(5), 753–757 (2005).
  • Jones RW, Kivipelto M, Feldman H et al. The Atorvastatin/Donepezil in Alzheimer’s Disease Study (LEADe): design and baseline characteristics. Alzheimers Dement.4(2), 145–153 (2008).
  • Feldman H, Jones RW, Kivipelto M et al. The LEADe study: a randomized, controlled trial investigating the effect of atorvastatin on cognitive and global function in patients with mild-to-moderate Alzheimer’s disease receiving background therapy of donepezil. Presented at: American Academy of Neurology Meeting. Chicago, IL, USA, 12–19 April 2008 (Abstract LBS.005).
  • Green DR, Reed JC. Mitochondria and apoptosis. Science281(5381), 1309–1312 (1998).
  • Spierings D, McStay G, Saleh M et al. Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science310(5745), 66–67 (2005).
  • Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO. Mitochondria as a target for neurotoxins and neuroprotective agents. Ann. NY Acad. Sci.993, 334–344; discussion 345–339 (2003).
  • Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol.58(4), 495–505 (2005).
  • Caspersen C, Wang N, Yao J et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J.19(14), 2040–2041 (2005).
  • Sirk D, Zhu Z, Wadia JS et al. Chronic exposure to sub-lethal β-amyloid (Aβ) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells. J. Neurochem.103(5), 1989–2003 (2007).
  • Doody RS, Gavrilova SI, Sano M et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet372(9634), 207–215 (2008).
  • Cummings JL, Doody R, Gavrilova S et al. 18-month data from an open-label extension of a one-year controlled trial of dimebon in mild-to-moderate Alzheimer’s disease. Presented at: The Alzheimer’s Association International Conference on Alzheimer’s Disease. Chicago, IL, USA, 26–31 July 2008 (P4-334).
  • Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol.8(11), 1056–1072 (2009).
  • Antonello M, Rotili D, Valente S, Kazantsev AG. Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise. Curr. Pharm. Des.15(34), 3940–3957 (2009).
  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature447(7141), 178–182 (2007).
  • Guan JS, Haggarty SJ, Giacometti E et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature459(7243), 55–60 (2009).
  • Green KN, Steffan JS, Martinez-Coria H et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci.28(45), 11500–11510 (2008).
  • Fumagalli F, Molteni R, Calabrese F, Maj PF, Racagni G, Riva MA. Neurotrophic factors in neurodegenerative disorders: potential for therapy. CNS Drugs22(12), 1005–1019 (2008).
  • Apfel SC. Is the therapeutic application of neurotrophic factors dead? Ann. Neurol.51(1), 8–11 (2002).
  • Blesch A. Neurotrophic factors in neurodegeneration. Brain Pathol.16(4), 295–303 (2006).
  • Eriksdotter Jonhagen M, Nordberg A, Amberla K et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.9(5), 246–257 (1998).
  • Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol.1(1), 51–57 (2002).
  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science215(4537), 1237–1239 (1982).
  • Tuszynski MH, Thal L, Pay M et al. A Phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med.11(5), 551–555 (2005).
  • Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH. Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J. Comp. Neurol.349(1), 148–164 (1994).
  • Chen KS, Gage FH. Somatic gene transfer of NGF to the aged brain: behavioral and morphological amelioration. J. Neurosci.15(4), 2819–2825 (1995).
  • Nagahara AH, Bernot T, Moseanko R et al. Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Exp. Neurol.215(1), 153–159 (2009).
  • Nagahara AH, Merrill DA, Coppola G et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med.15(3), 331–337 (2009).
  • Bishop KM, Hofer EK, Mehta A et al. Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp. Neurol.211(2), 574–584 (2008).
  • Alvarez XA, Cacabelos R, Laredo M et al. A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Eur. J. Neurol.13(1), 43–54 (2006).
  • Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health88(9), 1337–1342 (1998).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.