97
Views
9
CrossRef citations to date
0
Altmetric
Review

Genetics of medulloblastoma: clues for novel therapies

, , &
Pages 811-823 | Published online: 09 Jan 2014

References

  • Sardi I, Cavalieri D, Massimino M. Emerging treatments and gene expression profiling in high-risk medulloblastoma. Paediatr. Drugs9(2), 81–96 (2007).
  • Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch. Neurol.65(11), 1419–1424 (2008).
  • Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A. Medulloblastoma: from molecular pathology to therapy. Clin. Cancer Res.14(4), 971–976 (2008).
  • Carlotti CG Jr, Smith C, Rutka JT. The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg. Rev.31(4), 359–368; discussion 368–359 (2008).
  • Sarkar C, Deb P, Sharma MC. Recent advances in embryonal tumours of the central nervous system. Childs Nerv. Syst.21(4), 272–293 (2005).
  • Raffel C. Medulloblastoma: molecular genetics and animal models. Neoplasia6(4), 310–322 (2004).
  • Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol.6(12), 1073–1085 (2007).
  • Grill J, Bhangoo R. Recent development in chemotherapy of paediatric brain tumours. Curr. Opin. Oncol.19(6), 612–615 (2007).
  • Mazzola CA, Pollack IF. Medulloblastoma. Curr. Treat. Options Neurol.5(3), 189–198 (2003).
  • Packer RJ, Cogen P, Vezina G, Rorke LB. Medulloblastoma: clinical and biologic aspects. Neuro Oncol.1(3), 232–250 (1999).
  • Packer RJ, Rood BR, MacDonald TJ. Medulloblastoma: present concepts of stratification into risk groups. Pediatr. Neurosurg.39(2), 60–67 (2003).
  • Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA. Outcome of medulloblastoma in children: long-term complications and quality of life. Neuropediatrics36(6), 357–365 (2005).
  • Behesti H, Marino S. Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int. J. Biochem. Cell. Biol.41(3), 435–445 (2009).
  • Yokota N, Aruga J, Takai S et al. Predominant expression of human zic in cerebellar granule cell lineage and medulloblastoma. Cancer Res.56(2), 377–383 (1996).
  • Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu. Rev. Pathol.3, 341–365 (2008).
  • Marino S. Medulloblastoma: developmental mechanisms out of control. Trends Mol. Med.11(1), 17–22 (2005).
  • Kelleher FC, Fennelly D, Rafferty M. Common critical pathways in embryogenesis and cancer. Acta Oncol.45(4), 375–388 (2006).
  • Ingham PW, Placzek M. Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat. Rev. Genet.7(11), 841–850 (2006).
  • Taylor MD, Mainprize TG, Rutka JT. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery47(4), 888–901 (2000).
  • Farndon PA, Del Mastro RG, Evans DG, Kilpatrick MW. Location of gene for Gorlin syndrome. Lancet339(8793), 581–582 (1992).
  • Chenevix-Trench G, Wicking C, Berkman J et al. Further localization of the gene for nevoid basal cell carcinoma syndrome (NBCCS) in 15 Australasian families: linkage and loss of heterozygosity. Am. J. Hum. Genet.53(3), 760–767 (1993).
  • Goldstein AM, Stewart C, Bale AE, Bale SJ, Dean M. Localization of the gene for the nevoid basal cell carcinoma syndrome. Am. J. Hum. Genet.54(5), 765–773 (1994).
  • Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85(6), 841–851 (1996).
  • Evans DG, Farndon PA, Burnell LD, Gattamaneni HR, Birch JM. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br. J. Cancer64(5), 959–961 (1991).
  • Kimonis VE, Goldstein AM, Pastakia B et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am. J. Med. Genet.69(3), 299–308 (1997).
  • Friedrich RE. Diagnosis and treatment of patients with nevoid basal cell carcinoma syndrome [Gorlin-Goltz syndrome (GGS)]. Anticancer Res.27(4A), 1783–1787 (2007).
  • Hamilton SR, Liu B, Parsons RE et al. The molecular basis of Turcot’s syndrome. N. Engl. J. Med.332(13), 839–847 (1995).
  • Huang H, Mahler-Araujo BM, Sankila A et al.APC mutations in sporadic medulloblastomas. Am. J. Pathol.156(2), 433–437 (2000).
  • Lasser DM, DeVivo DC, Garvin J, Wilhelmsen KC. Turcot’s syndrome: evidence for linkage to the adenomatous polyposis coli (APC) locus. Neurology44(6), 1083–1086 (1994).
  • Varley JM, Evans DG, Birch JM. Li–Fraumeni syndrome – a molecular and clinical review. Br. J. Cancer76(1), 1–14 (1997).
  • Barel D, Avigad S, Mor C, Fogel M, Cohen IJ, Zaizov R. A novel germ-line mutation in the noncoding region of the p53 gene in a Li–Fraumeni family. Cancer Genet. Cytogenet.103(1), 1–6 (1998).
  • Taylor MD, Mainprize TG, Rutka JT, Becker L, Bayani J, Drake JM. Medulloblastoma in a child with Rubenstein–Taybi Syndrome: case report and review of the literature. Pediatr. Neurosurg.35(5), 235–238 (2001).
  • Palmer L, Nordborg C, Steneryd K, Aman P, Kyllerman M. Large-cell medulloblastoma in Aicardi syndrome. Case report and literature review. Neuropediatrics35(5), 307–311 (2004).
  • Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001).
  • Kadin ME, Rubinstein LJ, Nelson JS. Neonatal cerebellar medulloblastoma originating from the fetal external granular layer. J. Neuropathol. Exp. Neurol.29(4), 583–600 (1970).
  • Xie J, Murone M, Luoh SM et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature391(6662), 90–92 (1998).
  • Zurawel RH, Allen C, Chiappa S et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer27(1), 44–51 (2000).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet.31(3), 306–310 (2002).
  • Wetmore C, Eberhart DE, Curran T. The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res.60(8), 2239–2246 (2000).
  • Wiederschain D, Chen L, Johnson B et al. Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol. Cell. Biol.27(13), 4968–4979 (2007).
  • Leung C, Lingbeek M, Shakhova O et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428(6980), 337–341 (2004).
  • Paraf F, Jothy S, Van Meir EG. Brain tumor-polyposis syndrome: two genetic diseases? J. Clin. Oncol.15(7), 2744–2758 (1997).
  • Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res.58(5), 896–899 (1998).
  • Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of β-catenin in medulloblastomas. J. Neuropathol. Exp. Neurol.59(4), 333–337 (2000).
  • Baeza N, Masuoka J, Kleihues P, Ohgaki H. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene22(4), 632–636 (2003).
  • Ellison DW, Onilude OE, Lindsey JC et al. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol.23(31), 7951–7957 (2005).
  • Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu. Rev. Cell. Dev. Biol.23, 549–577 (2007).
  • Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance. Curr. Opin. Neurobiol.10(3), 392–399 (2000).
  • Hamada H, Kurimoto M, Endo S, Ogiichi T, Akai T, Takaku A. Turcot’s syndrome presenting with medulloblastoma and familiar adenomatous polyposis: a case report and review of the literature. Acta Neurochir. (Wien)140(6), 631–632 (1998).
  • Morin PJ. β-catenin signaling and cancer. Bioessays21(12), 1021–1030 (1999).
  • Taylor MD, Zhang X, Liu L et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene23(26), 4577–4583 (2004).
  • Guessous F, Li Y, Abounader R. Signaling pathways in medulloblastoma. J. Cell. Physiol.217(3), 577–583 (2008).
  • Fan X, Mikolaenko I, Elhassan I et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res.64(21), 7787–7793 (2004).
  • Hallahan AR, Pritchard JI, Hansen S et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res.64(21), 7794–7800 (2004).
  • Thompson MC, Fuller C, Hogg TL et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol.24(12), 1924–1931 (2006).
  • Kool M, Koster J, Bunt J et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One3(8), e3088 (2008).
  • Northcott PA, Fernandez-L A, Hagan JP et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res.69(8), 3249–3255 (2009).
  • Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J.19(13), 3159–3167 (2000).
  • Gilbertson RJ, Clifford SC. PDGFRB is overexpressed in metastatic medulloblastoma. Nat. Genet.35(3), 197–198 (2003).
  • Del Valle L, Enam S, Lassak A et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin. Cancer Res.8(6), 1822–1830 (2002).
  • MacDonald TJ, Brown KM, LaFleur B et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat. Genet.29(2), 143–152 (2001).
  • Gilbertson R, Wickramasinghe C, Hernan R et al. Clinical and molecular stratification of disease risk in medulloblastoma. Br. J. Cancer85(5), 705–712 (2001).
  • Pomeroy SL, Sturla LM. Molecular biology of medulloblastoma therapy. Pediatr. Neurosurg.39(6), 299–304 (2003).
  • Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol.5(4), 209–218 (2004).
  • Gajjar A, Hernan R, Kocak M et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J. Clin. Oncol.22(6), 984–993 (2004).
  • Ieraci A, Forni PE, Ponzetto C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc. Natl Acad. Sci. USA99(23), 15200–15205 (2002).
  • Honda S, Kagoshima M, Wanaka A, Tohyama M, Matsumoto K, Nakamura T. Localization and functional coupling of HGF and c-Met/HGF receptor in rat brain: implication as neurotrophic factor. Brain Res. Mol. Brain Res.32(2), 197–210 (1995).
  • Jung W, Castren E, Odenthal M et al. Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J. Cell Biol.126(2), 485–494 (1994).
  • Zhang L, Himi T, Morita I, Murota S. Hepatocyte growth factor protects cultured rat cerebellar granule neurons from apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. J. Neurosci. Res.59(4), 489–496 (2000).
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol.7(4), 436–451 (2005).
  • Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat. Rev. Drug Discov.7(6), 504–516 (2008).
  • Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin. Cancer Res.12(12), 3657–3660 (2006).
  • Tong CY, Hui AB, Yin XL et al. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J. Neurosurg.100(2 Suppl. Pediatrics), 187–193 (2004).
  • Li Y, Lal B, Kwon S et al. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res.65(20), 9355–9362 (2005).
  • Kim JY, Sutton ME, Lu DJ et al. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res.59(3), 711–719 (1999).
  • Grotzer MA, Janss AJ, Fung K et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J. Clin. Oncol.18(5), 1027–1035 (2000).
  • Bayani J, Zielenska M, Marrano P et al. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J. Neurosurg.93(3), 437–448 (2000).
  • Herms J, Neidt I, Luscher B et al. C-MYC expression in medulloblastoma and its prognostic value. Int. J. Cancer89(5), 395–402 (2000).
  • Aldosari N, Bigner SH, Burger PC et al. MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situhybridization study on paraffin sections from the Children’s Oncology Group. Arch. Pathol. Lab. Med.126(5), 540–544 (2002).
  • Michiels EM, Weiss MM, Hoovers JM et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J. Pediatr. Hematol. Oncol.24(3), 205–210 (2002).
  • Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer45(3), 290–303 (2006).
  • McCabe MG, Ichimura K, Liu L et al. High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J. Neuropathol. Exp. Neurol.65(6), 549–561 (2006).
  • Ciemerych MA, Kenney AM, Sicinska E et al. Development of mice expressing a single D-type cyclin. Genes Dev.16(24), 3277–3289 (2002).
  • Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development130(1), 15–28 (2003).
  • Scheurlen WG, Schwabe GC, Joos S, Mollenhauer J, Sorensen N, Kuhl J. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J. Clin. Oncol.16(7), 2478–2485 (1998).
  • Biegel JA, Rorke LB, Packer RJ et al. Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer1(2), 139–147 (1989).
  • Bigner SH, Mark J, Friedman HS, Biegel JA, Bigner DD. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet. Cytogenet.30(1), 91–101 (1988).
  • Griffin CA, Hawkins AL, Packer RJ, Rorke LB, Emanuel BS. Chromosome abnormalities in pediatric brain tumors. Cancer Res.48(1), 175–180 (1988).
  • Bayani J, Squire JA. Traditional banding of chromosomes for cytogenetic analysis. Curr. Protoc. Cell Biol. Chapter 22, Unit 22.3 (2004).
  • Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet.6(10), 782–792 (2005).
  • Emadian SM, McDonald JD, Gerken SC, Fults D. Correlation of chromosome 17p loss with clinical outcome in medulloblastoma. Clin. Cancer Res.2(9), 1559–1564 (1996).
  • Biegel JA, Janss AJ, Raffel C et al. Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin. Cancer Res.3(3), 473–478 (1997).
  • Reardon DA, Michalkiewicz E, Boyett JM et al. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res.57(18), 4042–4047 (1997).
  • Mendrzyk F, Korshunov A, Toedt G et al. Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes Cancer45(4), 401–410 (2006).
  • Mertens F, Johansson B, Mitelman F. Isochromosomes in neoplasia. Genes Chromosomes Cancer10(4), 221–230 (1994).
  • Boon K, Eberhart CG, Riggins GJ. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res.65(3), 703–707 (2005).
  • Di C, Liao S, Adamson DC et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res.65(3), 919–924 (2005).
  • Wang TL, Maierhofer C, Speicher MR et al. Digital karyotyping. Proc. Natl Acad. Sci. USA99(25), 16156–16161 (2002).
  • Davies JJ, Wilson IM, Lam WL. Array CGH technologies and their applications to cancer genomes. Chromosome Res.13(3), 237–248 (2005).
  • Inazawa J, Inoue J, Imoto I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci.95(7), 559–563 (2004).
  • Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat. Genet.37(Suppl.), S11–S17 (2005).
  • Barrett MT, Scheffer A, Ben-Dor A et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA101(51), 17765–17770 (2004).
  • Carvalho B, Ouwerkerk E, Meijer GA, Ylstra B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol.57(6), 644–646 (2004).
  • Mendrzyk F, Radlwimmer B, Joos S et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J. Clin. Oncol.23(34), 8853–8862 (2005).
  • Hinds DA, Stuve LL, Nilsen GB et al. Whole-genome patterns of common DNA variation in three human populations. Science307(5712), 1072–1079 (2005).
  • Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature409(6822), 928–933 (2001).
  • Wang DG, Fan JB, Siao CJ et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science280(5366), 1077–1082 (1998).
  • Huang J, Wei W, Zhang J et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum. Genomics1(4), 287–299 (2004).
  • LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res.37(13), 4181–4193 (2009).
  • Matsuzaki H, Loi H, Dong S et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res.14(3), 414–425 (2004).
  • Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436(7047), 117–122 (2005).
  • Hu N, Wang C, Hu Y et al. Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res.65(7), 2542–2546 (2005).
  • Schaid DJ, Guenther JC, Christensen GB et al. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am. J. Hum. Genet.75(6), 948–965 (2004).
  • Teh MT, Blaydon D, Chaplin T et al. Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res.65(19), 8597–8603 (2005).
  • Wong KK, Tsang YT, Shen J et al. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res.32(9), e69 (2004).
  • Zhao X, Li C, Paez JG et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res.64(9), 3060–3071 (2004).
  • Northcott PA, Nakahara Y, Wu X et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet.41(4), 465–472 (2009).
  • Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science296(5570), 1132–1136 (2002).
  • Tachibana M, Ueda J, Fukuda M et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev.19(7), 815–826 (2005).
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell128(4), 669–681 (2007).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6), 415–428 (2002).
  • Ting AH, McGarvey KM, Baylin SB. The cancer epigenome – components and functional correlates. Genes Dev.20(23), 3215–3231 (2006).
  • Kongkham PN, Northcott PA, Ra YS et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res.68(23), 9945–9953 (2008).
  • Lindsey JC, Lusher ME, Anderton JA et al. Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis25(5), 661–668 (2004).
  • Waha A, Waha A, Koch A et al. Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J. Neuropathol. Exp. Neurol.62(11), 1192–1201 (2003).
  • Waha A, Koch A, Hartmann W et al. SGNE1/7B2 is epigenetically altered and transcriptionally downregulated in human medulloblastomas. Oncogene26(38), 5662–5668 (2007).
  • Lindsey JC, Anderton JA, Lusher ME, Clifford SC. Epigenetic events in medulloblastoma development. Neurosurg. Focus19(5), E10 (2005).
  • Anderton JA, Lindsey JC, Lusher ME et al. Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro Oncol.10(6), 981–994 (2008).
  • Lusher ME, Lindsey JC, Latif F, Pearson AD, Ellison DW, Clifford SC. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res.62(20), 5906–5911 (2002).
  • Rood BR, Zhang H, Weitman DM, Cogen PH. Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res.62(13), 3794–3797 (2002).
  • Fults DW. Modeling medulloblastoma with genetically engineered mice. Neurosurg. Focus19(5), E7 (2005).
  • Piedimonte LR, Wailes IK, Weiner HL. Medulloblastoma: mouse models and novel targeted therapies based on the Sonic hedgehog pathway. Neurosurg. Focus19(5), E8 (2005).
  • Bucca G, Carruba G, Saetta A, Muti P, Castagnetta L, Smith CP. Gene expression profiling of human cancers. Ann. NY Acad. Sci.1028, 28–37 (2004).
  • Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat. Genet.37(Suppl.), S31–S37 (2005).
  • Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat. Genet.37(Suppl.), S38–S45 (2005).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415(6870), 436–442 (2002).
  • Fernandez-L A, Northcott PA, Taylor MD, Kenney AM. Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle8(24), 4049–4054 (2009).
  • Ferretti E, De Smaele E, Miele E et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J.27(19), 2616–2627 (2008).
  • Pierson J, Hostager B, Fan R, Vibhakar R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J. Neurooncol.90(1), 1–7 (2008).
  • Lu Y, Ryan SL, Elliott DJ et al. Amplification and overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in medulloblastoma. PLoS One4(7), e6159 (2009).
  • Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science297(5586), 1559–1561 (2002).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/-p53-/- mice. Cancer Cell6(3), 229–240 (2004).
  • Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.66(15), 7445–7452 (2006).
  • Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R. Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in Hedgehog expressing pancreatic cancer cells. Cancer Chemother. Pharmacol.58(6), 765–770 (2006).
  • Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406(6799), 1005–1009 (2000).
  • Tamber MS, Bansal K, Liang ML et al. Current concepts in the molecular genetics of pediatric brain tumors: implications for emerging therapies. Childs Nerv. Syst.22(11), 1379–1394 (2006).
  • Hernan R, Fasheh R, Calabrese C et al. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res.63(1), 140–148 (2003).
  • Ma PC, Schaefer E, Christensen JG, Salgia R. A selective small molecule c-MET inhibitor, PHA665752, cooperates with rapamycin. Clin. Cancer Res.11(6), 2312–2319 (2005).
  • Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics6(3), 570–586 (2009).
  • Hallahan AR, Pritchard JI, Chandraratna RA et al. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat. Med.9(8), 1033–1038 (2003).
  • Spiller SE, Ditzler SH, Pullar BJ, Olson JM. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J. Neurooncol.87(2), 133–141 (2008).
  • Matsutani M. Chemoradiotherapy for brain tumors: current status and perspectives. Int. J. Clin. Oncol.9(6), 471–474 (2004).
  • Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev.16(21), 2743–2748 (2002).
  • Liu J, Guo L, Luo Y, Li JW, Li H. All trans-retinoic acid suppresses in vitro growth and down-regulates LIFgene expression as well as telomerase activity of human medulloblastoma cells. Anticancer Res.20(4), 2659–2664 (2000).
  • Ding L, Getz G, Wheeler DA et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature455(7216), 1069–1075 (2008).
  • Jones S, Zhang X, Parsons DW et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321(5897), 1801–1806 (2008).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Zhang X, Si L, Li Y, Mi C. Expression of GSK-3β, β-catenin and PPAR-γ in medulloblastoma. Chin. J. Canc. Res.21(3), 235–239 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.