263
Views
33
CrossRef citations to date
0
Altmetric
Review

Treating multiple sclerosis with monoclonal antibodies: a 2010 update

Pages 791-809 | Published online: 09 Jan 2014

References

  • Buttmann M, Rieckmann P. Treating multiple sclerosis with monoclonal antibodies. Expert Rev. Neurother.8(3), 433–455 (2008).
  • Zecca C, Nessi F, Bernasconi E, Gobbi C. Ocular toxoplasmosis during natalizumab treatment. Neurology73(17), 1418–1419 (2009).
  • Stuve O, Wiendl H. Iatrogenic immunosuppression with biologics in MS: expecting the unexpected? Neurology73(17), 1346–1347 (2009).
  • Gutwinski S, Erbe S, Munch C, Janke O, Muller U, Haas J. Severe cutaneous Candida infection during natalizumab therapy in multiple sclerosis. Neurology74(6), 521–523 (2010).
  • Egli A, Infanti L, Dumoulin A et al. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J. Infect. Dis.199(6), 837–846 (2009).
  • Knowles WA, Pipkin P, Andrews N et al. Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J. Med. Virol.71(1), 115–123 (2003).
  • Major EO. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu. Rev. Med.61, 35–47 (2010).
  • Rudick RA, Polman CH, O’Connor PW et al. Evaluation of natalizumab treatment on the presence of JC virus in blood and urine from multiple sclerosis patients. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009 (P883).
  • Dominguez-Mozo MI, Alvarez-Lafuente R, Garcia-Montojo M et al. JC virus in multiple sclerosis patients treated with natalizumab. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009 (P315).
  • Gorelik L, Goelz S, Sandrock AW. Asymptomatic reactivation of JC virus in patients treated with natalizumab. N. Engl. J. Med.361(25), 2487–2488; author reply 2489–2490 (2009).
  • Chen Y, Bord E, Tompkins T et al. Asymptomatic reactivation of JC virus in patients treated with natalizumab. N. Engl. J. Med.361(11), 1067–1074 (2009).
  • Sadiq SA, Puccio LM, Brydon EW. JCV detection in multiple sclerosis patients treated with natalizumab. J. Neurol. (2009) (Epub ahead of print).
  • Kappos L, Bates D, Hartung HP et al. Natalizumab treatment for multiple sclerosis: recommendations for patient selection and monitoring. Lancet Neurol.6(5), 431–441 (2007).
  • Berger JR, Miller CS, Mootoor Y, Avdiushko SA, Kryscio RJ, Zhu H. JC virus detection in bodily fluids: clues to transmission. Clin. Infect. Dis.43(1), e9–e12 (2006).
  • Marzocchetti A, Tompkins T, Clifford DB et al. Determinants of survival in progressive multifocal leukoencephalopathy. Neurology73(19), 1551–1558 (2009).
  • Du Pasquier RA, Kuroda MJ, Zheng Y, Jean-Jacques J, Letvin NL, Koralnik IJ. A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain127(Pt 9), 1970–1978 (2004).
  • Koralnik IJ, Du Pasquier RA, Kuroda MJ et al. Association of prolonged survival in HLA-A2+ progressive multifocal leukoencephalopathy patients with a CTL response specific for a commonly recognized JC virus epitope. J. Immunol.168(1), 499–504 (2002).
  • Jilek S, Jaquiery E, Hirsch HH et al. Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study. Lancet Neurol.9(3), 264–272 (2010).
  • Haghikia A, Pappas D, Pula B et al. Assessment of a possible bioenergetic marker of cellular immunocompetence in MS patients undergoing immunotherapy: longitudinal analyses. Presented at: 61st Annual Meeting of the American Academy of Neurology. Seattle, USA, 25 April–2 May 2009.
  • Varnier OE, McDermott JL, Giacomazzi CG et al. Non invasive surveillance of JCV reactivation in blood and urine from natalizumab treated MS patients, blood donors and immunocompromised patients identifies two PML cases in HIV and congenital immunodeficiency patients. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009 (P889).
  • Schulick RD, Weir MB, Miller MW, Cohen DJ, Bermas BL, Shearer GM. Longitudinal study of in vitro CD4+ T helper cell function in recently transplanted renal allograft patients undergoing tapering of their immunosuppressive drugs. Transplantation56(3), 590–596 (1993).
  • Kowalski R, Post D, Schneider MC et al. Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin. Transplant.17(2), 77–88 (2003).
  • Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum.60(12), 3761–3765 (2009).
  • d’Arminio Monforte A, Cinque P, Mocroft A et al. Changing incidence of central nervous system diseases in the EuroSIDA cohort. Ann. Neurol.55(3), 320–328 (2004).
  • Engsig FN, Hansen AB, Omland LH et al. Incidence, clinical presentation, and outcome of progressive multifocal leukoencephalopathy in HIV-infected patients during the highly active antiretroviral therapy era: a nationwide cohort study. J. Infect. Dis.199(1), 77–83 (2009).
  • Koralnik IJ. New insights into progressive multifocal leukoencephalopathy. Curr. Opin. Neurol.17(3), 365–370 (2004).
  • Berger JR, Kaszovitz B, Post MJ, Dickinson G. Progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. A review of the literature with a report of sixteen cases. Ann. Intern. Med.107(1), 78–87 (1987).
  • De Luca A, Giancola ML, Ammassari A et al. The effect of potent antiretroviral therapy and JC virus load in cerebrospinal fluid on clinical outcome of patients with AIDS-associated progressive multifocal leukoencephalopathy. J. Infect. Dis.182(4), 1077–1083 (2000).
  • Antinori A, Cingolani A, Lorenzini P et al. Clinical epidemiology and survival of progressive multifocal leukoencephalopathy in the era of highly active antiretroviral therapy: data from the Italian Registry Investigative Neuro AIDS (IRINA). J. Neurovirol.9(Suppl. 1), 47–53 (2003).
  • Riedel DJ, Pardo CA, McArthur J, Nath A. Therapy Insight: CNS manifestations of HIV-associated immune reconstitution inflammatory syndrome. Nat. Clin. Pract. Neurol.2(10), 557–565 (2006).
  • McCombe JA, Auer RN, Maingat FG, Houston S, Gill MJ, Power C. Neurologic immune reconstitution inflammatory syndrome in HIV/AIDS: outcome and epidemiology. Neurology72(9), 835–841 (2009).
  • Sidhu N, McCutchan JA. Unmasking of PML by HAART: unusual clinical features and the role of IRIS. J. Neuroimmunol.219(1–2), 100–104 (2010).
  • Perumal J, Hreha S, Bao F et al. Post-natalizumab associated rebound or CNS immune reconstitution syndrome: clinical and MRI findings. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009 (P418).
  • Linda H, von Heijne A, Major EO et al. Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N. Engl. J. Med.361(11), 1081–1087 (2009).
  • Wenning W, Haghikia A, Laubenberger J et al. Treatment of progressive multifocal leukoencephalopathy associated with natalizumab. N. Engl. J. Med.361(11), 1075–1080 (2009).
  • Carson KR, Focosi D, Major EO et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol.10(8), 816–824 (2009).
  • Carson KR, Evens AM, Richey EA et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood113(20), 4834–4840 (2009).
  • Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy in patients with rheumatic diseases: are patients with systemic lupus erythematosus at particular risk? Autoimmun. Rev.8(2), 144–146 (2008).
  • Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med.353(4), 375–381 (2005).
  • Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med.353(4), 369–374 (2005).
  • Goodman AD, Rossman H, Bar-Or A et al. GLANCE: results of a Phase 2, randomized, double-blind, placebo-controlled study. Neurology72(9), 806–812 (2009).
  • O’Connor PW, Polman CH, Goodman AD et al. Efficacy and safety of natalizumab in the STRATA study. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009.
  • Stuve O, Cravens PD, Frohman EM et al. Immunologic, clinical, and radiologic status 14 months after cessation of natalizumab therapy. Neurology72(5), 396–401 (2009).
  • Schiess N, Calabresi PA. Natalizumab: bound to rebound? Neurology72(5), 392–393 (2009).
  • Vellinga MM, Castelijns JA, Barkhof F, Uitdehaag BM, Polman CH. Postwithdrawal rebound increase in T2 lesional activity in natalizumab-treated MS patients. Neurology70(13 Pt 2), 1150–1151 (2008).
  • Tubridy N, Behan PO, Capildeo R et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology53(3), 466–472 (1999).
  • Gold R, Hartung HP, Hohlfeld R et al. [Therapy of multiple sclerosis with monoclonal antibodies – results and recommendations of a workshop of the medical advisory board of the German Multiple Sclerosis Society]. Aktuelle Neurologie36(7), 334–344 (2009).
  • De Luca A, Ammassari A, Pezzotti P et al. Cidofovir in addition to antiretroviral treatment is not effective for AIDS-associated progressive multifocal leukoencephalopathy: a multicohort analysis. Aids22(14), 1759–1767 (2008).
  • Hou J, Major EO. The efficacy of nucleoside analogs against JC virus multiplication in a persistently infected human fetal brain cell line. J. Neurovirol.4(4), 451–456 (1998).
  • Hall CD, Dafni U, Simpson D et al. Failure of cytarabine in progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. AIDS Clinical Trials Group 243 Team. N. Engl. J. Med.338(19), 1345–1351 (1998).
  • Brickelmaier M, Lugovskoy A, Kartikeyan R et al. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob. Agents Chemother.53(5), 1840–1849 (2009).
  • Elphick GF, Querbes W, Jordan JA et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science306(5700), 1380–1383 (2004).
  • O’Hara BA, Atwood WJ. Interferon β1-a and selective anti-5HT2a receptor antagonists inhibit infection of human glial cells by JC virus. Virus Res.132(1–2), 97–103 (2008).
  • Lima MA, Auriel E, Wuthrich C, Borenstein NM, Koralnik IJ. Progressive multifocal leukoencephalopathy as a complication of hepatitis C virus treatment in an HIV-negative patient. Clin. Infect. Dis.41(3), 417–419 (2005).
  • Verma S, Cikurel K, Koralnik IJ et al. Mirtazapine in progressive multifocal leukoencephalopathy associated with polycythemia vera. J. Infect. Dis.196(5), 709–711 (2007).
  • Bezabeh S, Flowers CM, Kortepeter C, Avigan M. Review article: clinically significant liver injury in patients treated with natalizumab (TYSABRI). Aliment. Pharmacol. Ther. (2010) (Epub ahead of print).
  • Golay J, Manganini M, Rambaldi A, Introna M. Effect of alemtuzumab on neoplastic B cells. Haematologica89(12), 1476–1483 (2004).
  • Mone AP, Cheney C, Banks AL et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia20(2), 272–279 (2006).
  • Smolewski P, Szmigielska-Kaplon A, Cebula B et al. Proapoptotic activity of alemtuzumab alone and in combination with rituximab or purine nucleoside analogues in chronic lymphocytic leukemia cells. Leuk. Lymphoma46(1), 87–100 (2005).
  • Zent CS, Secreto CR, LaPlant BR et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk. Res.32(12), 1849–1856 (2008).
  • Cox AL, Thompson SA, Jones JL et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur. J. Immunol.35(11), 3332–3342 (2005).
  • Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J. Clin. Immunol.30(1), 99–105 (2010).
  • Batten M, Groom J, Cachero TG et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med.192(10), 1453–1466 (2000).
  • Hu Y, Turner MJ, Shields J et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology128(2), 260–270 (2009).
  • Wray S. A descriptive analysis of infectious adverse events in alemtuzumab-treated multiple sclerosis patients. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Düsseldorf, Germany, 9–12 September 2009 (P812).
  • Jones JL, Coles AJ. Spotlight on alemtuzumab. Int. MS J.16(3), 77–81 (2009).
  • Chen F, Day SL, Metcalfe RA et al. Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advanced human immunodeficiency virus (HIV) disease. Medicine (Baltimore)84(2), 98–106 (2005).
  • Daikeler T, Tyndall A. Autoimmunity following haematopoietic stem-cell transplantation. Best Pract. Res. Clin. Haematol.20(2), 349–360 (2007).
  • Jubault V, Penfornis A, Schillo F et al. Sequential occurrence of thyroid autoantibodies and Graves’ disease after immune restoration in severely immunocompromised human immunodeficiency virus-1-infected patients. J. Clin. Endocrinol. Metab.85(11), 4254–4257 (2000).
  • Krupica T Jr, Fry TJ, Mackall CL. Autoimmunity during lymphopenia: a two-hit model. Clin. Immunol.120(2), 121–128 (2006).
  • Ettinger R, Kuchen S, Lipsky PE. Interleukin 21 as a target of intervention in autoimmune disease. Ann. Rheum. Dis.67(Suppl. 3), iii83–iii86 (2008).
  • Jones JL, Phuah CL, Cox AL et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest.119(7), 2052–2061 (2009).
  • Weetman A. Immune reconstitution syndrome and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab.23(6), 693–702 (2009).
  • Coles AJ, Compston DA, Selmaj KW et al. Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N. Engl. J. Med.359(17), 1786–1801 (2008).
  • Coles AJ. Alemtuzumab treatment benefit is durable: primary efficacy outcomes of CAMMS223 at 4 years. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Düsseldorf, Germany, 9–12 September 2009.
  • Hirst CL, Pace A, Pickersgill TP et al. Campath 1-H treatment in patients with aggressive relapsing remitting multiple sclerosis. J. Neurol.255(2), 231–238 (2008).
  • Selmaj K. Immunogenicity of alemtuzumab treatment for relapsing–remitting multiple sclerosis: no effect on efficacy or safety. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Düsseldorf, Germany, 9–12 September 2009 (P811).
  • Ooi JD, Holdsworth SR, Kitching AR. Advances in the pathogenesis of Goodpasture’s disease: from epitopes to autoantibodies to effector T cells. J. Autoimmun.31(3), 295–300 (2008).
  • Coles AJ, Cox A, Le Page E et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol.253(1), 98–108 (2006).
  • Pace AA, Zajicek JP. Melanoma following treatment with alemtuzumab for multiple sclerosis. Eur. J. Neurol.16(4), e70–e71 (2009).
  • Hauser SL, Waubant E, Arnold DL et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med.358(7), 676–688 (2008).
  • Hawker K, O’Connor P, Freedman MS et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol.66(4), 460–471 (2009).
  • Wolinsky JS, Narayana PA, O’Connor P et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann. Neurol.61(1), 14–24 (2007).
  • Wolinsky JS, Shochat T, Weiss S, Ladkani D. Glatiramer acetate treatment in PPMS: why males appear to respond favorably. J. Neurol. Sci.286(1–2), 92–98 (2009).
  • Bar-Or A, Calabresi PA, Arnold D et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, Phase I trial. Ann. Neurol.63(3), 395–400 (2008).
  • Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology66(10), 1485–1489 (2006).
  • Bradl M, Misu T, Takahashi T et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann. Neurol.66(5), 630–643 (2009).
  • Cayrol R, Saikali P, Vincent T. Effector functions of antiaquaporin-4 autoantibodies in neuromyelitis optica. Ann. NY Acad. Sci.1173, 478–486 (2009).
  • Kinoshita M, Nakatsuji Y, Kimura T et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem. Biophys. Res. Commun.386(4), 623–627 (2009).
  • Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology64(7), 1270–1272 (2005).
  • Jacob A, Weinshenker BG, Violich I et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol.65(11), 1443–1448 (2008).
  • Kausar F, Mustafa K, Sweis G et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin. Biol. Ther.9(7), 889–895 (2009).
  • van Meerten T, Hagenbeek A. CD20-targeted therapy: a breakthrough in the treatment of non-Hodgkin’s lymphoma. Neth. J. Med.67(7), 251–259 (2009).
  • Genovese MC, Kaine JL, Lowenstein MB et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a Phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum.58(9), 2652–2661 (2008).
  • Morschhauser F, Marlton P, Vitolo U et al. Interim results of a Phase I/II study of ocrelizumab, a new humanised anti-CD20 antibody in patients with relapsed/refractory follicular non-hodgkin’s lymphoma. Blood110, 199A (2007).
  • van der Kolk LE, Grillo-Lopez AJ, Baars JW, Hack CE, van Oers MH. Complement activation plays a key role in the side-effects of rituximab treatment. Br. J. Haematol.115(4), 807–811 (2001).
  • Castillo J, Milani C, Mendez-Allwood D. Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin. Investig. Drugs18(4), 491–500 (2009).
  • Robak T. Ofatumumab, a human monoclonal antibody for lymphoid malignancies and autoimmune disorders. Curr. Opin. Mol. Ther.10(3), 294–309 (2008).
  • Coiffier B, Lepretre S, Pedersen LM et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a Phase 1–2 study. Blood111(3), 1094–1100 (2008).
  • Traynor K. Ofatumumab approved for advanced CLL. Am. J. Health Syst. Pharm.66(23), 2062 (2009).
  • Hagenbeek A, Gadeberg O, Johnson P et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a Phase 1/2 trial. Blood111(12), 5486–5495 (2008).
  • Ostergaard M, Baslund B, Rigby W et al. Ofatumumab, a human CD20 monoclonal antibody, in the treatment of rheumatoid arthritis: early results from an ongoing, double-blind, randomized, placebo-controlled clinical trial. Presented at: ACR/ARHP 2007 Annual Scientific Meeting. Boston, USA, 6–11 November 2007.
  • Ostergaard M, Baslund B, Rigby W et al. Efficacy of ofatumumab in rheumatoid arthritis (RA) patients with inadequate response to one or more DMARDS: 48 weeks follow-up. Presented at: ACR/ARHP 2008 Annual Scientific Meeting. San Francisco, CA, USA, 24–29 October 2008.
  • Teeling JL, French RR, Cragg MS et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood104(6), 1793–1800 (2004).
  • Teeling JL, Mackus WJ, Wiegman LJ et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol.177(1), 362–371 (2006).
  • Pawluczkowycz AW, Beurskens FJ, Beum PV et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J. Immunol.183(1), 749–758 (2009).
  • Uchiyama S, Suzuki Y, Otake K et al. Development of novel humanized anti-CD20 antibodies based on affinity constant and epitope. Cancer Sci.101(1), 201–209 (2009).
  • Cragg MS, Morgan SM, Chan HT et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood101(3), 1045–1052 (2003).
  • Bleeker WK, Munk ME, Mackus WJ et al. Estimation of dose requirements for sustained in vivo activity of a therapeutic human anti-CD20 antibody. Br. J. Haematol.140(3), 303–312 (2008).
  • Hawker K, O’Connor P, Freedman MS et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol.66(4), 460–471 (2009).
  • Bielekova B, Catalfamo M, Reichert-Scrivner S et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA103(15), 5941–5946 (2006).
  • Wynn D, Kaufman M, Montalban X et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a Phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon b. Lancet Neurol.9(4), 381–390 (2010).
  • Sheridan J, Elkins J, Zhang Y et al. Expansion of CD56bright NK cells correlates with therapeutic response to daclizumab in multiple sclerosis. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Düsseldorf, Germany, 9–12 September 2009 (P430).
  • Oh U, Blevins G, Griffith C et al. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch. Neurol.66(4), 471–479 (2009).
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199(7), 971–979 (2004).
  • Haas J, Hug A, Viehover A et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol.35(11), 3343–3352 (2005).
  • Bielekova B, Howard T, Packer AN et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol.66(4), 483–489 (2009).
  • Ali EN, Healy BC, Stazzone LA, Brown BA, Weiner HL, Khoury SJ. Daclizumab in treatment of multiple sclerosis patients. Mult. Scler.15(2), 272–274 (2009).
  • Chien AL, Elder JT, Ellis CN. Ustekinumab: a new option in psoriasis therapy. Drugs69(9), 1141–1152 (2009).
  • Weber J, Keam SJ. Ustekinumab. BioDrugs23(1), 53–61 (2009).
  • Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol.19(6), 362–371 (2007).
  • Leonardi CL, Kimball AB, Papp KA et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet371(9625), 1665–1674 (2008).
  • Papp KA, Langley RG, Lebwohl M et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet371(9625), 1675–1684 (2008).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421(6924), 744–748 (2003).
  • Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201(2), 233–240 (2005).
  • Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med.187(4), 537–546 (1998).
  • Segal BM, Shevach EM. IL-12 unmasks latent autoimmune disease in resistant mice. J. Exp. Med.184(2), 771–775 (1996).
  • Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc. Natl Acad. Sci. USA94(2), 599–603 (1997).
  • Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J. Immunol.176(12), 7768–7774 (2006).
  • Lock C, Hermans G, Pedotti R et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med.8(5), 500–508 (2002).
  • Woodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine5(6), 583–588 (1993).
  • Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a Phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol.7(9), 796–804 (2008).
  • Longbrake EE, Racke MK. Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Expert Rev. Neurother.9(3), 319–321 (2009).
  • Mackay F, Schneider P. Cracking the BAFF code. Nat. Rev. Immunol.9(7), 491–502 (2009).
  • Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J. Immunol.183(6), 3561–3567 (2009).
  • Kikly K, Manetta J, Smith H, Wierda D, Witcher D. Characterization of LY2127399, a neutralizing antibody for BAFF. Presented at: ACR/ARHP 2009 Annual Scientific Meeting. PA, USA, 17–21 October 2009.
  • Genovese MC, Mociran E, Biagini M, Bojin S, Sloan-Lancaster J. Phase 2 study of safety and efficacy of a novel anti-BAFF monoclonal antibody, in patients with RA treated with methotrexate (MTX). Presented at: ACR/ARHP 2009 Annual Scientific Meeting. PA, USA, 17–21 October 2009.
  • Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.148(1–2), 11–23 (2004).
  • Huntington ND, Tomioka R, Clavarino C et al. A BAFF antagonist suppresses experimental autoimmune encephalomyelitis by targeting cell-mediated and humoral immune responses. Int. Immunol.18(10), 1473–1485 (2006).
  • Krumbholz M, Theil D, Derfuss T et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med.201(2), 195–200 (2005).
  • Mackay F, Sierro F, Grey ST, Gordon TP. The BAFF/APRIL system: an important player in systemic rheumatic diseases. Curr. Dir. Autoimmun.8, 243–265 (2005).
  • Thangarajh M, Gomes A, Masterman T, Hillert J, Hjelmstrom P. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J. Neuroimmunol.152(1–2), 183–190 (2004).
  • Krumbholz M, Faber H, Steinmeyer F et al. Interferon-β increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity. Brain131(Pt 6), 1455–1463 (2008).
  • Schwid SR, Goodman AD, Mattson DH. Autoimmune hyperthyroidism in patients with multiple sclerosis treated with interferon β-1b. Arch. Neurol.54(9), 1169–1190 (1997).
  • Rotondi M, Mazziotti G, Biondi B et al. Long-term treatment with Interferon-β therapy for multiple sclerosis and occurrence of Graves' disease. J. Endocrinol. Invest.23(5), 321–324 (2000).
  • Caraccio N, Dardano A, Manfredonia F et al. Long-term follow-up of 106 multiple sclerosis patients undergoing Interferon-β 1a or 1b therapy: predictive factors of thyroid disease development and duration. J. Clin. Endocrinol. Metab.90(7), 4133–4137 (2005).
  • Bergamaschi R, Montomoli C. Melanoma in multiple sclerosis treated with natalizumab: causal association or coincidence? Mult. Scler.15(12), 1532–1533 (2009).
  • Ismail A, Kemp J, Sharrack B. Melanoma complicating treatment with natalizumab (tysabri) for multiple sclerosis. J. Neurol.256(10), 1771–1772 (2009).
  • Mullen JT, Vartanian TK, Atkins MB. Melanoma complicating treatment with natalizumab for multiple sclerosis. N. Engl. J. Med.358(6), 647–648 (2008).
  • Schweikert A, Kremer M, Ringel F et al. Primary central nervous system lymphoma in a patient treated with natalizumab. Ann. Neurol.66(3), 403–406 (2009).
  • Martinelli V, Radaelli M, Straffi L, Rodegher M, Comi G. Mitoxantrone: benefits and risks in multiple sclerosis patients. Neurol. Sci.30(Suppl. 2), S167–S170 (2009).
  • Rose JW, Burns JB, Bjorklund J, Klein J, Watt HE, Carlson NG. Daclizumab Phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology69(8), 785–789 (2007).
  • Kappos L, Radue EW, O’Connor P et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med.362(5), 387–401 (2010).
  • Giovannoni G, Comi G, Cook S et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 416–426 (2010).
  • Cohen JA, Barkhof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 402–415 (2010).
  • Sipe JC. Cladribine for multiple sclerosis: review and current status. Expert Rev. Neurother.5(6), 721–727 (2005).
  • Cook S, Vermersch P, Comi G et al. Safety and tolerability of cladribine tablets in relapsing–remitting multiple sclerosis during the 96-week, Phase III, double-blind, placebo-controlled CLARITY study. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009.
  • Kappos L, Antel J, Comi G et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med.355(11), 1124–1140 (2006).
  • O’Connor PW, Li D, Freedman MS et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology66(6), 894–900 (2006).
  • Freedman M, Wolinsky JS, Byrnes WJ et al. Oral Teriflunomide or placebo added to interferon β for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Presented at: 25th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. Duesseldorf, Germany, 9–12 September 2009.
  • Comi G, Pulizzi A, Rovaris M et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled Phase IIb study. Lancet371(9630), 2085–2092 (2008).
  • Kappos L, Gold R, Miller DH et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled Phase IIb study. Lancet372(9648), 1463–1472 (2008).
  • Klawiter EC, Cross AH, Naismith RT. The present efficacy of multiple sclerosis therapeutics: is the new 66% just the old 33%? Neurology73(12), 984–990 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.