348
Views
44
CrossRef citations to date
0
Altmetric
Theme: Demyelinating Diseases - Review

Epstein–Barr virus and multiple sclerosis: association or causation?

, &
Pages 287-297 | Published online: 09 Jan 2014

References

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med. 343(13), 938–952 (2000).
  • Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61(4), 288–299 (2007).
  • Tsurumi T, Fujita M, Kudoh A. Latent and lytic Epstein–Barr virus replication strategies. Rev. Med. Virol. 15(1), 3–15 (2005).
  • Bray PF, Bloomer LC, Salmon VC, Bagley MH, Larsen PD. Epstein–Barr virus infection and antibody synthesis in patients with multiple sclerosis. Arch. Neurol. 40(7), 406–408 (1983).
  • de Ory F, Guisasola ME, Sanz JC, García-Bermejo I. Evaluation of four commercial systems for the diagnosis of Epstein–Barr virus primary infections. Clin. Vaccine Immunol. 18(3), 444–448 (2011).
  • Pakpoor J, Disanto G, Gerber JE et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein–Barr virus: a meta-analysis. Mult. Scler. doi:10.1177/1352458512449682 (2012) (Epub ahead of print).
  • Ascherio A, Munch M. Epstein–Barr virus and multiple sclerosis. Epidemiology 11(2), 220–224 (2000).
  • Pohl D, Krone B, Rostasy K et al. High seroprevalence of Epstein–Barr virus in children with multiple sclerosis. Neurology 67(11), 2063–2065 (2006).
  • Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A. Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Ann. Neurol. 67(6), 824–830 (2010).
  • Munch M, Riisom K, Christensen T, Møller-Larsen A, Haahr S. The significance of Epstein–Barr virus seropositivity in multiple sclerosis patients? Acta Neurol. Scand. 97(3), 171–174 (1998).
  • Levin LI, Munger KL, Rubertone MV et al. Temporal relationship between elevation of Epstein–Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293(20), 2496–2500 (2005).
  • Ascherio A, Munger KL, Lennette ET et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286(24), 3083–3088 (2001).
  • DeLorenze GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A. Epstein–Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 63(6), 839–844 (2006).
  • Sundström P, Juto P, Wadell G et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology 62(12), 2277–2282 (2004).
  • Décard BF, von Ahsen N, Grunwald T et al. Low vitamin D and elevated immunoreactivity against Epstein–Barr virus before first clinical manifestation of multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 83(12), 1170–1173 (2012).
  • Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA. EBV and systemic lupus erythematosus: a new perspective. J. Immunol. 174(11), 6599–6607 (2005).
  • Thorley-Lawson DA, Gross A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350(13), 1328–1337 (2004).
  • Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS ONE 5(9), 1 (2010).
  • Hallee TJ, Evans AS, Niederman JC, Brooks CM, Voegtly JH. Infectious mononucleosis at the United States Military Academy. A prospective study of a single class over four years. Yale J. Biol. Med. 47(3), 182–195 (1974).
  • Nielsen TR, Rostgaard K, Nielsen NM et al. Multiple sclerosis after infectious mononucleosis. Arch. Neurol. 64(1), 72–75 (2007).
  • Simpson S Jr, Blizzard L, Otahal P, van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J. Neurol. Neurosurg. Psychiatr. 82(10), 1132–1141 (2011).
  • Handel AE, Giovannoni G, Ebers GC, Ramagopalan SV. Environmental factors and their timing in adult-onset multiple sclerosis. Nat. Rev. Neurol. 6(3), 156–166 (2010).
  • Ebers GC Environmental factors and multiple sclerosis. Lancet Neurol. 7, 268–277 (2008).
  • Ramagopalan SV, Hoang U, Seagroatt V et al. Geography of hospital admissions for multiple sclerosis in England and comparison with the geography of hospital admissions for infectious mononucleosis: a descriptive study. J. Neurol. Neurosurg. Psychiatr. 82(6), 682–687 (2011).
  • Pordeus V, Barzilai O, Sherer Y et al. A latitudinal gradient study of common anti-infectious agent antibody prevalence in Italy and Colombia. Isr. Med. Assoc. J. 10(1), 65–68 (2008).
  • Disanto G, Pakpoor J, Morahan JM et al. Epstein–Barr virus, latitude and multiple sclerosis. Mult. Scler. doi:10.1177/1352458512451942 (2012) (Epub ahead of print).
  • Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 9(7), 727–739 (2010).
  • Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23), 2832–2838 (2006).
  • Holmøy T. Vitamin D status modulates the immune response to Epstein–Barr virus: synergistic effect of risk factors in multiple sclerosis. Med. Hypotheses 70(1), 66–69 (2008).
  • Zwart SR, Mehta SK, Ploutz-Snyder R et al. Response to vitamin D supplementation during Antarctic winter is related to BMI, and supplementation can mitigate Epstein–Barr Virus Reactivation. J. Nutr. 141(4), 692–697 (2011).
  • Munger KL, Levin LI, O’Reilly EJ, Falk KI, Ascherio A. Anti-Epstein–Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult. Scler. 17(10), 1185–1193 (2011).
  • Pender MP. CD8+ T-cell deficiency, Epstein–Barr virus infection, vitamin D deficiency, and steps to autoimmunity: a unifying hypothesis. Autoimmune Dis. 2012, 189096 (2012).
  • Jilek S, Schluep M, Meylan P et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131(Pt 7), 1712–1721 (2008).
  • Holmøy T, Vartdal F. Cerebrospinal fluid T cells from multiple sclerosis patients recognize autologous Epstein–Barr virus-transformed B cells. J. Neurovirol. 10(1), 52–56 (2004).
  • Scotet E, Peyrat MA, Saulquin X et al. Frequent enrichment for CD8 T cells reactive against common herpes viruses in chronic inflammatory lesions: towards a reassessment of the physiopathological significance of T cell clonal expansions found in autoimmune inflammatory processes. Eur. J. Immunol. 29(3), 973–985 (1999).
  • Höllsberg P, Hansen HJ, Haahr S. Altered CD8+ T cell responses to selected Epstein–Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin. Exp. Immunol. 132(1), 137–143 (2003).
  • Lünemann JD, Edwards N, Muraro PA et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129(Pt 6), 1493–1506 (2006).
  • Serafini B, Rosicarelli B, Franciotta D et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204(12), 2899–2912 (2007).
  • Yenamandra SP, Hellman U, Kempkes B et al. Epstein–Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell. Mol. Life Sci. 67(24), 4249–4256 (2010).
  • Handel AE, Jarvis L, McLaughlin R, Fries A, Ebers GC, Ramagopalan SV. The epidemiology of multiple sclerosis in Scotland: inferences from hospital admissions. PLoS ONE 6(1), e14606 (2011).
  • Hjalgrim H, Ekström-Smedby K, Rostgaard K et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case–control study. Cancer Epidemiol. Biomarkers Prev. 16(8), 1561–1566 (2007).
  • Chang ET, Zheng T, Lennette ET et al. Heterogeneity of risk factors and antibody profiles in Epstein–Barr virus genome-positive and -negative hodgkin lymphoma. J. Infect. Dis. 189(12), 2271–2281 (2004).
  • Simon KC, van der Mei IA, Munger KL et al. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. Neurology 74(17), 1365–1371 (2010).
  • Sundqvist E, Sundström P, Lindén M et al. Lack of replication of interaction between EBNA1 IgG and smoking in risk for multiple sclerosis. Neurology 79(13), 1363–1368 (2012).
  • De Jager PL, Simon KC, Munger KL, Rioux JD, Hafler DA, Ascherio A. Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 70(13 Pt 2), 1113–1118 (2008).
  • Sundström P, Nyström L, Jidell E, Hallmans G. EBNA-1 reactivity and HLA DRB1*1501 as statistically independent risk factors for multiple sclerosis: a case–control study. Mult. Scler. 14(8), 1120–1122 (2008).
  • Brynedal B, Duvefelt K, Jonasdottir G et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE 2(7), e664 (2007).
  • Sundqvist E, Sundström P, Lindén M et al. Epstein–Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 13(1), 14–20 (2012).
  • Hedström AK, Sundqvist E, Bäärnhielm M et al. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134(Pt 3), 653–664 (2011).
  • Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80(5), 695–705 (1995).
  • Ufret-Vincenty RL, Quigley L, Tresser N et al. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. J. Exp. Med. 188(9), 1725–1738 (1998).
  • Lang HL, Jacobsen H, Ikemizu S et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3(10), 940–943 (2002).
  • Holmøy T, Kvale EØ, Vartdal F. Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein–Barr virus and myelin basic protein. J. Neurovirol. 10(5), 278–283 (2004).
  • Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 24(11), 584–588 (2003).
  • van Noort JM, Bajramovic JJ, Plomp AC, van Stipdonk MJ. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J. Neuroimmunol. 105(1), 46–57 (2000).
  • Pender MP. The essential role of Epstein–Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist 17(4), 351–367 (2011).
  • Jordan MC, Jordan GW, Stevens JG, Miller G. Latent herpesviruses of humans. Ann. Intern. Med. 100(6), 866–880 (1984).
  • Haahr S, Sommerlund M, Møller-Larsen A, Nielsen R, Hansen HJ. Just another dubious virus in cells from a patient with multiple sclerosis? Lancet 337(8745), 863–864 (1991).
  • Perron H, Lalande B, Gratacap B et al. Isolation of retrovirus from patients with multiple sclerosis. Lancet 337(8745), 862–863 (1991).
  • Arru G, Mameli G, Asone V et al. Multiple sclerosis and HERV-W/MSRV: a multicentric study. Int. J. Biomed. Sci. 3(4), 292–297 (2007).
  • Mameli G, Poddighe L, Mei A et al. Expression and activation by Epstein–Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS ONE 7(9), e44991 (2012).
  • Perron H, Lazarini F, Ruprecht K et al. Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J. Neurovirol. 11(1), 23–33 (2005).
  • Antony JM, van Marle G, Opii W et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7(10), 1088–1095 (2004).
  • Borkosky SS, Whitley C, Kopp-Schneider A, zur Hausen H, de Villiers EM. Epstein–Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLoS ONE 7(2), e32160 (2012).
  • Willis SN, Stadelmann C, Rodig SJ et al. Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132(Pt 12), 3318–3328 (2009).
  • Peferoen LA, Lamers F, Lodder LN et al. Epstein–Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133(Pt 5), e137 (2010).
  • Sargsyan SA, Shearer AJ, Ritchie AM et al. Absence of Epstein–Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 74(14), 1127–1135 (2010).
  • Tzartos JS, Khan G, Vossenkamper A et al. Association of innate immune activation with latent Epstein–Barr virus in active MS lesions. Neurology 78(1), 15–23 (2012).
  • Yu GH, Montone KT, Frias-Hidvegi D, Cajulis RS, Brody BA, Levy RM. Cytomorphology of primary CNS lymphoma: review of 23 cases and evidence for the role of EBV. Diagn. Cytopathol. 14(2), 114–120 (1996).
  • Hauser SL, Waubant E, Arnold DL et al.; HERMES Trial Group. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N. Engl. J. Med. 358(7), 676–688 (2008).
  • Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 13(5), 577–585 (2008).
  • Cross AH, Klein RS, Piccio L. Rituximab combination therapy in relapsing multiple sclerosis. Ther. Adv. Neurol. Disord. 5(6), 311–319 (2012).
  • Lycke J, Svennerholm B, Hjelmquist E et al. Acyclovir treatment of relapsing–remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J. Neurol. 243(3), 214–224 (1996).
  • Bech E, Lycke J, Gadeberg P et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 58(1), 31–36 (2002).
  • Dreyfus DH. Autoimmune disease: A role for new anti-viral therapies? Autoimmun. Rev. 11(2), 88–97 (2011).
  • Sokal EM, Hoppenbrouwers K, Vandermeulen C et al. Recombinant gp350 vaccine for infectious mononucleosis: a Phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196(12), 1749–1753 (2007).
  • Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein–Barr virus: an important vaccine target for cancer prevention. Sci. Transl. Med. 3(107), 107fs7 (2011).
  • Sashihara J, Hoshino Y, Bowman JJ et al. Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog. 7(10), e1002308 (2011).
  • Hill AB. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).
  • Giovannoni G, Cutter GR, Lunemann J et al. Infectious causes of multiple sclerosis. Lancet Neurol. 5(10), 887–894 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.