399
Views
3
CrossRef citations to date
0
Altmetric
Editorial

Mountainside to bedside: reality or fiction?

&
Pages 561-565 | Published online: 09 Jan 2014

References

  • Grocott MP, Martin DS, Levett DZ et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med.360(2), 140–149 (2009).
  • Abdelsalam M. Permissive hypoxemia: is it time to change our approach? Chest129(1), 210–211 (2006).
  • Martin D, Windsor J. From mountain to bedside: understanding the clinical relevance of human acclimatisation to high-altitude hypoxia. Postgrad. Med. J.84(998), 622–627 (2008).
  • Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit. Care11, 203 (2007).
  • Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda)24, 97–106 (2009).
  • Rohner-Jeanrenaud F, Jeanrenaud B. Obesity, leptin, and the brain. N. Engl. J. Med.334(5), 324–325 (1996).
  • Takabatake N, Nakamura H, Abe S et al. Circulating leptin in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.159(4), 1215–1219 (1999).
  • Schols AM, Creutzberg EC, Buurman WA et al. Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.160(4), 1220–1226 (1999).
  • Creutzberg EC, Wouters EF, Vanderhoven-Augustin IM et al. Disturbances in leptin metabolism are related to energy imbalance during acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.162(4), 1239–1245 (2000).
  • Boyer SJ, Blume FD. Weight loss and changes in body composition at high altitude. J. Appl. Physiol.57(5), 1580–1585 (1984).
  • Zamboni M, Armellini F, Turcato E et al. Effect of altitude on body composition during mountaineering expeditions: interrelationships with changes in dietary habits. Ann. Nutr. Metab.40(6), 315–324 (1996).
  • Landbo C, Prescott E, Lange P et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.160(6), 1856–1861 (1999).
  • Guinot-Bourquin SL, Raguso CA, Pichard C. Metabolic adaptation to hypoxia: chronic obstructive pulmonary disease and high altitude. Rev. Med. Suisse Romande124(10), 629–634 (2004).
  • Flores EA, Bistrian BR, Pomposelli JJ et al. Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1. J. Clin. Invest.83(5), 1614–1622 (1989).
  • Oelz O, Howald H, Di Prampero PE et al. Physiological profile of world-class high-altitude climbers. J. Appl. Physiol.60(5), 1734–1742 (1986).
  • Jobin J, Maltais F, Doyon JF et al. Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of skeletal muscle. J. Cardiopulm. Rehabil.18(6), 432–437 (1998).
  • Gosker HR, Engelen MP, van Mameren H et al. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am. J. Clin. Nutr.76(1), 113–119 (2002).
  • Hoppeler H, Vogt M, Weibel ER et al. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol.88(1), 109–119 (2003).
  • Koechlin C, Maltais F, Saey D et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax60(10), 834–841 (2005).
  • Linke A, Adams V, Schulze PC et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation111(14), 1763–1770 (2005).
  • Ennezat PV, Malendowicz SL, Testa M et al. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J. Am. Coll. Cardiol.38(1), 194–198 (2001).
  • Ghofrani HA, Reichenberger F, Kohstall MG et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med.141(3), 169–177 (2004).
  • Blum A. Treating heart failure with sildenafil. Congest. Heart Fail.15(4), 181–185 (2009).
  • Faoro V, Lamotte M, Deboeck G et al. Effects of sildenafil on exercise capacity in hypoxic normal subjects. High Alt. Med. Biol.8(2), 155–163 (2007).
  • Bivalacqua TJ, Sussan TE, Gebska MA et al. Sildenafil inhibits superoxide formation and prevents endothelial dysfunction in a mouse model of secondhand smoke induced erectile dysfunction. J. Urol.181(2), 899–906 (2009).
  • Yuan G, Nanduri J, Khan S et al. Induction of HIF-1α expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J. Cell. Physiol.217(3), 674–685 (2008).
  • Kumar GK, Rai V, Sharma SD et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J. Physiol.575(Pt 1), 229–239 (2006).
  • Lesske J, Fletcher EC, Bao G et al. Hypertension caused by chronic intermittent hypoxia – influence of chemoreceptors and sympathetic nervous system. J. Hypertens.15(12), 1593–1603 (1997).
  • Rahman I. Antioxidant therapeutic advances in COPD. Ther. Adv. Respir. Dis.2(6), 351–374 (2008).
  • Bailey DM, Kleger GR, Holzgraefe M et al. Pathophysiological significance of peroxidative stress, neuronal damage, and membrane permeability in acute mountain sickness. J. Appl. Physiol.96(4), 1459–1463 (2004).
  • Milledge JS. The ventilatory response to hypoxia: how much is good for a mountaineer? Postgrad. Med. J.63(737), 169–172 (1987).
  • Arkinstall WW, Nirmel K, Klissouras V et al. Genetic differences in the ventilatory response to inhaled CO2. J. Appl. Physiol.36(1), 6–11 (1974).
  • Kawakami Y, Yoshikawa T, Shida A et al. Control of breathing in young twins. J. Appl. Physiol.52(3), 537–542 (1982).
  • Collins DD, Scoggin CH, Zwillich CW et al. Hereditary aspects of decreased hypoxic response. J. Clin. Invest.62(1), 105–110 (1978).
  • Brutsaert TD. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives. Respir. Physiol. Neurobiol.158(2–3), 151–160 (2007).
  • Beall CM, Strohl KP, Blangero J et al. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am. J. Phys. Anthropol.104(4), 427–447 (1997).
  • Lane DJ, Howell JB, Giblin B. Relation between airways obstruction and CO2 tension in chronic obstructive airways disease. Br. Med. J.3, 707–709 (1968).
  • Wan ES, Silverman EK. Genetics of COPD and emphysema. Chest136(3), 859–866 (2009).
  • Garcia-Aymerich J, Agusti A, Barbera JA et al. Phenotypic heterogeneity of chronic obstructive pulmonary disease. Arch. Bronconeumol.45(3), 129–138 (2009).
  • Fleetham JA, Arnup ME, Anthonisen NR. Familial aspects of ventilatory control in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis.129(1), 3–7 (1984).
  • Grocott M, Montgomery H. Genetophysiology: using genetic strategies to explore hypoxic adaptation. High Alt. Med. Biol.9(2), 123–129 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.