78
Views
9
CrossRef citations to date
0
Altmetric
Perspective

Pulmonary mucosal dendritic cells in T-cell activation: implications for TB therapy

, &
Pages 75-85 | Published online: 09 Jan 2014

References

  • Naik SH, Metcalf D, van Nieuwenhuijze A et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol.7(6), 663–671 (2006).
  • Liu K, Waskow C, Liu X et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol.8(6), 578–583 (2007).
  • Sung SS, Fu SM, Rose CE Jr et al. A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol.176(4), 2161–2172 (2006).
  • Jakubzick C, Tacke F, Ginhoux F et al. Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J. Immunol.180(5), 3019–3027 (2008).
  • Maus UA, Koay MA, Delbeck T et al. Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am. J. Physiol. Lung Cell Mol. Physiol.282(6), L1245–L1252 (2002).
  • Vermaelen K, Pauwels R. Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry Part A61A(2), 170–177 (2004).
  • Kugathasan K, Roediger E, Small C-L et al. CD11c+ antigen presenting cells from the alveolar space, lung parenchyma and spleen differ in their phenotype and capabilities to activate naive and antigen-primed T cells. BMC Immunol.9(1), 48 (2008).
  • Cleret A, Quesnel-Hellmann A, Vallon-Eberhard A et al. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol.178(12), 7994–8001 (2007).
  • Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ. Modulation of dendritic cell trafficking to and from the airways. J. Immunol.176(6), 3578–3584 (2006).
  • Wolf AJ, Linas B, Trevejo-Nunez GJ et al.Mycobacterium TB infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol.179(4), 2509–2519 (2007).
  • Gonzalez-Juarrero M, Shim TS, Kipnis A, Junqueira-Kipnis AP, Orme IM. Dynamics of macrophage cell populations during murine pulmonary TB. J. Immunol.171(6), 3128–3135 (2003).
  • Kirby AC, Coles MC, Kaye PM. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol.183(3), 1983–1989 (2009).
  • Sertl K, Takemura T, Tschachler E et al. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J. Exp. Med.163(2), 436–451 (1986).
  • Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J. Exp. Med.173(6), 1345–1356 (1991).
  • Jahnsen FL, Strickland DH, Thomas JA et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol.177(9), 5861–5867 (2006).
  • del Rio M-L, Rodriguez-Barbosa J-I, Kremmer E, Forster R. CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol.178(11), 6861–6866 (2007).
  • GeurtsvanKessel CH, Willart MA, van Rijt LS et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J. Exp. Med.205(7), 1621–1634 (2008).
  • Anis MM, Fulton SA, Reba SM et al. Modulation of pulmonary dendritic-cell function during mycobacterial infection. Infect. Immun.76(2), 671–677 (2007).
  • Raymond M, Rubio M, Fortin G et al. Selective control of SIRP-α-positive airway dendritic cell trafficking through CD47 is critical for the development of T(H)2-mediated allergic inflammation. J. Allergy Clin. Immunol.124(6), 1333–1342 (2009).
  • Sköld M, Behar SM. TB triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J. Immunol.181(9), 6349–6360 (2008).
  • Fahlen-Yrlid L, Gustafsson T, Westlund J et al. CD11chigh dendritic cells are essential for activation of CD4+ T cells and generation of specific antibodies following mucosal immunization. J. Immunol.183(8), 5032–5041 (2009).
  • van Rijt LS, Jung S, KleinJan A et al.In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med.201(6), 981–991 (2005).
  • von Garnier C, Filgueira L, Wikstrom M et al. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J. Immunol.175(3), 1609–1618 (2005).
  • Varol C, Landsman L, Fogg DK et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med.204(1), 171–180 (2007).
  • Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol.178(4), 2000–2007 (2007).
  • Landsman L, Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J. Immunol.179(6), 3488–3494 (2007).
  • de Heer HJ, Hammad H, Soullie T et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med.200(1), 89–98 (2004).
  • Masten BJ, Olson GK, Tarleton CA et al. Characterization of myeloid and plasmacytoid dendritic cells in human lung. J. Immunol.177(11), 7784–7793 (2006).
  • Wang H, Peters N, Schwarze J. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol.177(9), 6263–6270 (2006).
  • Reljic R, Sano CD, Crawford C et al. Time course of mycobacterial infection of dendritic cells in the lungs of intranasally infected mice. Tuberculosis (Edinburgh, Scotland)85(1), 81–88 (2005).
  • Ernst JD. Macrophage receptors for Mycobacterium TB. Infect. Immun.66(4), 1277–1281 (1998).
  • Tailleux L, Schwartz O, Herrmann J-L et al. DC-SIGN is the major Mycobacterium TB receptor on human dendritic cells. J. Exp. Med.197(1), 121–127 (2003).
  • Tailleux L, Pham-Thi N, Bergeron-Lafaurie A et al. DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with TB. PLoS Med.2(12), e381 (2005).
  • Balboa L, Romero MM, Yokobori N et al.Mycobacterium TB impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile. Immunol. Cell Biol.88, 716–726 (2010).
  • Gupta D, Sharma S, Singhal J et al. Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium TB antigens expressed inside macrophages during the course of infection. J. Immunol.184(10), 5444–5455 (2010).
  • Bodnar KA, Serbina NV, Flynn JL. Fate of Mycobacterium TB within murine dendritic cells. Infect. Immun.69(2), 800–809 (2001).
  • Ordway D, Henao-Tamayo M, Orme IM, Gonzalez-Juarrero M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium TB express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J. Immunol.175(6), 3873–3881 (2005).
  • Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human TB granuloma. Nat. Immunol.10(9), 943–948 (2009).
  • Bafica A, Scanga CA, Feng CG et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium TB. J. Exp. Med.202(12), 1715–1724 (2005).
  • Vesosky B, Rottinghaus EK, Stromberg P, Turner J, Beamer G. CCL5 participates in early protection against Mycobacterium TB. J. Leukoc. Biol.87(6), 1153–1165 (2010).
  • Peters W, Cyster JG, Mack M et al. CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium TB. J. Immunol.172(12), 7647–7653 (2004).
  • Wolf AJ, Desvignes L, Linas B et al. Initiation of the adaptive immune response to Mycobacterium TB depends on antigen production in the local lymph node, not the lungs. J. Exp. Med.205(1), 105–115 (2008).
  • Tian T, Woodworth J, Sköld M, Behar SM. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium TB and exacerbates the outcome of infection. J. Immunol.175(5), 3268–3272 (2005).
  • Jung S, Unutmaz D, Wong P et al.In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17(2), 211–220 (2002).
  • Kashino SS, Vallerskog T, Martens G et al. Initiation of acquired immunity in the lungs of mice lacking lymph nodes after infection with aerosolized Mycobacterium TB. Am. J. Pathol.176(1), 198–204 (2010).
  • Day TA, Koch M, Nouailles G et al. Secondary lymphoid organs are dispensable for the development of T-cell-mediated immunity during TB. Eur. J. Immunol.40(6), 1663–1673 (2010).
  • Sallusto F, Schaerli P, Loetscher P et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol.28(9), 2760–2769 (1998).
  • Dieu M-C, Vanbervliet B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med.188(2), 373–386 (1998).
  • Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J. Immunol.176(9), 5153–5159 (2006).
  • Olmos S, Stukes S, Ernst JD. Ectopic activation of Mycobacterium TB-specific CD4+ T cells in lungs of CCR7-/- mice. J. Immunol.184(2), 895–901 (2010).
  • McCormick S, Santosuosso M, Small CL et al. Mucosally delivered dendritic cells activate T cells independently of IL-12 and endogenous APCs. J. Immunol.181(4), 2356–2367 (2008).
  • Khader SA, Partida-Sanchez S, Bell G et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium TB infection. J. Exp. Med.203(7), 1805–1815 (2006).
  • Gao X, Wang S, Fan Y et al. CD8+DC, but not CD8–DC, isolated from BCG-infected mice reduces pathological reactions induced by mycobacterial challenge infection. PLoS One5(2), e9281 (2010).
  • Edelson BT, KC W, Juang R et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med.207(4), 823–836 (2010).
  • Reiley WW, Calayag MD, Wittmer ST et al. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium TB infection are initiated in the mediastinal lymph nodes. Proc. Natl Acad. Sci. USA105(31), 10961–10966 (2008).
  • Shaler CR, Kugathasan K. McCormick S et al. Pulmonary mycobacterial granuloma: increased IL-10 production contributes to establishing a symbiotic host–microbe microenviroment. Am. J. Path. (2010) (In Press).
  • Divangahi M, Chen M, Gan H et al.Mycobacterium TB evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol.10(8), 899–906 (2009).
  • Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. Eicosanoid pathways regulate adaptive immunity to Mycobacterium TB. Nat. Immunol.11(8), 751–758 (2010).
  • Wakeham J, Wang J, Xing Z. Genetically determined disparate innate and adaptive cell-mediated immune responses to pulmonary Mycobacteriumbovis BCG infection in C57BL/6 and BALB/c mice. Infect. Immun.68(12), 6946–6953 (2000).
  • Martins de Sousa E, Bonfim de Bortoli F, Amaral EP et al. Acute immune response to Mycobacterium massiliense in C57BL/6 and BALB/c mice. Infect. Immun.78(4), 1571–1581 (2010).
  • Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium TB is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun.70(8), 4501–4509 (2002).
  • Cardona P-J, Gordillo S, Diaz J et al. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium TB. Infect. Immun.71(10), 5845–5854 (2003).
  • Divangahi M, Yang T, Kugathasan K et al. Critical negative regulation of Type 1 T cell immunity and immunopathology by signaling adaptor DAP12 during intracellular infection. J. Immunol.179(6), 4015–4026 (2007).
  • Chu CL, Yu YL, Shen KY et al. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcR&ggr. Eur. J. Immunol.38(1), 166–173 (2008).
  • Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med.194(8), 1111–1122 (2001).
  • Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev.227(1), 150–160 (2009).
  • Ronan EO, Lee LN, Beverley PCL, Tchilian EZ. Immunization of mice with a recombinant adenovirus vaccine inhibits the early growth of Mycobacterium TB after infection. PLoS One4(12), e8235 (2009).
  • Rodrigues LC, Pereira SM, Cunha SS et al. Effect of BCG revaccination on incidence of TB in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. Lancet366(9493), 1290–1295 (2005).
  • Group KPT. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and TB in Malawai. Lancet366, 1290–1295 (1996).
  • Cardona PJ, Amat I, Gordillo S et al. Immunotherapy with fragmented Mycobacterium TB cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of TB. Vaccine23(11), 1393–1398 (2005).
  • Birkholz K, Schwenkert M, Kellner C et al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood116(13), 2277–2285 (2010).
  • Bonifaz LC, Bonnyay DP, Charalambous A et al.In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199(6), 815–824 (2004).
  • Bivas-Benita M, van Meijgaarden KE, Franken KL et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium TB. Vaccine22(13–14), 1609–1615 (2004).
  • Rosada RS, de la Torre LG, Frantz FG et al. Protection against TB by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol.9, 38 (2008).
  • Roediger EK, Kugathasan K, Zhang X, Lichty BD, Xing Z. Heterologous boosting of recombinant adenoviral prime immunization with a novel vesicular stomatitis virus-vectored TB vaccine. Mol. Ther.16(6), 1161–1169 (2008).
  • Malowany JI, McCormick S, Santosuosso M et al. Development of cell-based TB vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Mol. Ther.13(4), 766–775 (2006).
  • Dietz AB, Bulur PA, Brown CA, Pankratz VS, Vuk-Pavlovic S. Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Gene Ther.8(5), 419–423 (2001).
  • Antonelli LRV, Gigliotti Rothfuchs A, Gonçalves R et al. Intranasal poly-IC treatment exacerbates TB in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest.120(5), 1674–1682 (2010).
  • Santosuosso M, Zhang X, McCormick S et al. Mechanisms of mucosal and parenteral TB vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174(12), 7986–7994 (2005).
  • DeFrancesco L. Landmark approval for Dendreon’s cancer vaccine. Nat. Biotech.28(6), 531–532 (2010).
  • Kim TW, Hung CF, Boyd D et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J. Immunol.171(6), 2970–2976 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.