150
Views
10
CrossRef citations to date
0
Altmetric
Review

Lipids in cystic fibrosis

, , , &
Pages 527-535 | Published online: 09 Jan 2014

References

  • Kerem B, Rommens JM, Buchanan JA et al. Identification of the cystic fibrosis gene: genetic analysis. Science245, 1073–1080 (1989).
  • Rommens JM, Iannuzzi MC, Kerem B et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science245, 1059–1065 (1989).
  • Snouwaert JN, Brigman KK, Latour AM et al. An animal model for cystic fibrosis made by gene targeting. Science257, 1083–1088 (1992).
  • Ratcliff R, Evans MJ, Cuthbert AW et al. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat. Genet.4, 35–41 (1993).
  • Dorin JR, Dickinson P, Emslie E et al. Successful targeting of the mouse cystic fibrosis transmembrane conductance regulator gene in embryonal stem cells. Transgenic Res.1, 101–105 (1992).
  • Larbig M, Jansen S, Dorsch M et al. Residual cftr expression varies with age in cftr(tm1Hgu) cystic fibrosis mice: impact on morphology and physiology. Pathobiology70, 89–97 (2002).
  • Gray MA, Winpenny JP, Porteous DJ, Dorin JR, Argent BE. CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am. J. Physiol.266, C213–C221 (1994).
  • Colledge WH, Abella BS, Southern KW et al. Generation and characterization of a delta F508 cystic fibrosis mouse model. Nat. Genet.10, 445–452 (1995).
  • Zeiher BG, Eichwald E, Zabner J et al. A mouse model for the delta F508 allele of cystic fibrosis. J. Clin. Invest.96, 2051–2064 (1995).
  • Delaney SJ, Alton EW, Smith SN et al. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J.15, 955–963 (1996).
  • Dickinson P, Smith SN, Webb S et al. The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics. Hum. Mol. Genet.11, 243–251 (2002).
  • Kent G, Iles R, Bear CE et al. Lung disease in mice with cystic fibrosis. J. Clin. Invest.100, 3060–3069 (1997).
  • Kent G, Oliver M, Foskett JK et al. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr. Res.40, 233–241 (1996).
  • Durie PR, Kent G, Phillips MJ, Ackerley CA. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am. J. Pathol.164, 1481–1493 (2004).
  • Hodges CA, Cotton CU, Palmert MR, Drumm ML. Generation of a conditional null allele for Cftr in mice. Genesis46, 546–552 (2008).
  • Sun X, Sui H, Fisher JT et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J. Clin. Invest.120, 3149–3160 (2010).
  • Chen J.H, Stoltz, DA, Karp PH et al. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell143, 911–923 (2010).
  • Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am. J. Pathol.176, 1377–1389 (2010).
  • Meyerholz DK, Stoltz DA, Namati E et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am. J. Respir. Crit. Med.182, 1251–1261 (2010).
  • Stoltz DA, Meyerhold DK, Pezzulo et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Trans. Med.2, 29ra31 (2010).
  • Verhaeghe C, Delbecque K, de Leval L, Oury C, Bours V. Early inflammation in the airways of a cystic fibrosis foetus. J. Cyst. Fibros.6, 304–308 (2007).
  • Khan TZ, Wagener JS, Bost T et al. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med.151, 1075–1082 (1995).
  • Tabary O, Escotte S, Couetil JP et al. Relationship between IκBα deficiency, NFκB activity and interleukin-8 production in CF human airway epithelial cells. Pflugers Arch.443(Suppl. 1), S40–S44 (2001).
  • Tirouvanziam R, de Bentzmann S, Hubeau C et al. Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell Mol. Biol.23, 121–127 (2000).
  • Inoue H, Massion PP, Ueki IF et al. Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am. J. Respir. Cell Mol. Biol.11, 651–663 (1994).
  • Oceandy D, McMorran BJ, Smith SN et al. Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum. Mol. Genet.11, 1059–1067 (2002).
  • Bonfield TL, Konstan MW, Burfeind P et al. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.13, 257–261 (1995).
  • Venkatakrishnan A, Stecenko AA, King G et al. Exaggerated activation of nuclear factor-kappaB and altered IκB-β processing in cystic fibrosis bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol.23, 396–403 (2000).
  • Griese M, Essl R, Schmidt R et al. Pulmonary surfactant, lung function, and endobronchial inflammation in cystic fibrosis. Am. J. Respir. Crit. Care Med.170, 1000–1005 (2004).
  • Schultz MJ, Rijneveld AW, Florquin S et al. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung Cell Mol. Physiol.282, L285–L290 (2002).
  • Goldstein W, Döring G. Lysosomal enzymes from polymorphonuclear leukocytes and protease inhibitors in patients with cystic fibrosis. Am. Rev. Respir. Dis.134, 49–56 (1986).
  • Matsui H, Verghese MW, Kesimer M et al. Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J. Immunol.175, 1090–1099 (2005).
  • Matsui H, Wagner VE, Hill DB et al. A physical linkage between CF airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc. Natl Acad. Sci. USA103, 18131–18136 (2006).
  • Whitchurch CB, Tolker–Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science295, 1487 (2002).
  • Worlitzsch D, Tarran R, Ulrich M et al. Reduced oxygen concentrations in airway mucus contribute to the early and late pathogenesis of Pseudomonas aeruginosa CF airways infection. J. Clin. Invest.109, 317–325 (2002).
  • Pier GB, Grout M, Zaidi TS et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science271, 64–67 (1996).
  • Coleman FT, Mueschenborn S, Meluleni G et al. Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc. Natl Acad. Sci. USA100, 1949–1954 (2003).
  • Schroeder TH, Reiniger N, Meluleni G et al. Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J. Immunol.166, 7410–7418 (2001).
  • Muenzner P, Bachmann V, Zimmermann W, Hentschel J, Hauck CR. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science329, 1197–1201 (2010).
  • Grassmè H, Kirschnek S, Riethmüeller J et al. CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science290, 527–530 (2000).
  • Jendrossek V, Fillon S, Belka C et al. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect. Immun.71, 2665–2673 (2003).
  • Grassmè H, Jendrossek V, Riehle A et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med.9, 322–330 (2003).
  • Cannon CL, Kowalski MP, Stopak KS, Pier GB. Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am. J. Resp. Cell Mol. Biol.29, 188–197 (2003).
  • Fadok VA, Bratton DL, Konowal A et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest.101, 890–898 (1998).
  • Sekine C, Yagita H, Kobata T et al. Fas-mediated stimulation induces IL-8 secretion by rheumatoid arthritis synoviocytes independently of CPP32-mediated apoptosis. Biochem. Biophys. Res. Commun.228, 14–20 (1996).
  • Kumar V, Becker T, Jansen S et al. Expression levels of FAS are regulated through an evolutionary conserved element in intron 2, which modulates cystic fibrosis disease severity. Genes Immun.9, 689–696 (2008).
  • Di A, Brown ME, Deriy LV et al. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat. Cell Biol.8, 933–944 (2006).
  • Barasch J, Kiss B, Prince A et al. Defective acidification of intracellular organelles in cystic fibrosis. Nature352, 70–73 (1991).
  • Haggie PM, Verkman AS. Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J. Biol. Chem.282, 31422–31428 (2007).
  • Brown DA, London E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol.14, 111–136 (1998).
  • Kolesnick RN, Goni FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J. Cell Physiol.184, 285–300 (2000).
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature387, 569–572 (1997).
  • Eggeling C, Ringemann C, Medda R et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature457, 1159–1162 (2009).
  • Grassmè H, Jekle A, Riehle A et al. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem.276, 20589–20596 (2001).
  • Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene22, 7070–7077 (2003).
  • Grassmè H, Gulbins E, Brenner B et al. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell91, 605–615 (1997).
  • Hauck CR, Grassmè H, Bock J et al. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett.478, 260–266 (2000).
  • Cremesti A, Paris F, Grassmè H et al. Ceramide enables fas to cap and kill. J. Biol. Chem.276, 23954–23961 (2001).
  • Grassmè H, Schwarz H, Gulbins E. Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem. Biophys. Res. Commun.284, 1016–1030 (2001).
  • Grassmè H, Jendrossek V, Bock J, Riehle A, Gulbins E. Ceramide-rich membrane rafts mediate CD40 clustering. J. Immunol.168, 298–307 (2002).
  • Dumitru CA, Gulbins E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene25, 5612–5625 (2006).
  • Abdel Shakor AB, Kwiatkowska K, Sobota A. Cell surface ceramide generation precedes and controls FcγRII clustering and phosphorylation in rafts. J. Biol. Chem.279, 36778–36787 (2004).
  • Goggel R, Winoto-Morbach S, Vielhaber G et al. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat. Med.10, 155–160 (2004).
  • Grassmè H, Riehle A, Wilker B, Gulbins E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J. Biol. Chem.280, 26256–26262 (2005).
  • Rotolo JA, Zhang J, Donepudi M et al. Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J. Biol. Chem.280, 26425–26434 (2005).
  • Lacour S, Hammann A, Grazide S et al. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res.64, 3593–3598 (2004).
  • Heinrich M, Wickel M, Schneider-Brachert W et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo. J.18, 5252–5263 (1999).
  • Huwiler A, Johansen B, Skarstad A, Pfeilschifter J. Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J.15, 7–9 (2001).
  • Zhang Y, Yao B, Delikat S et al. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell89, 63–72 (1997).
  • Dobrowsky RT, Hannun YA. Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A. Adv. Lipid Res.25, 91–104 (1993).
  • Muller G, Ayoub M, Storz P et al. PKC zeta is a molecular switch in signal transduction of TNF-α, bifunctionally regulated by ceramide and arachidonic acid. EMBO J.14, 1961–1969 (1995).
  • Huwiler A, Fabbro D, Pfeilschifter J. Selective ceramide binding to protein kinase C-α and -δ isoenzymes in renal mesangial cells. Biochemistry37, 14556–14562 (1998).
  • Szabo I, Gulbins E, Apfel H et al. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem.271, 20465–20469 (1996).
  • Gulbins E, Szabo I, Baltzer K, Lang F. Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc. Natl Acad. Sci. USA94, 7661–7666 (1997).
  • Lepple-Wienhues A, Belka C, Laun T et al. Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc. Natl Acad. Sci. USA96, 13795–13800 (1999).
  • Bock J, Szabo I, Gamper N, Adams C, Gulbins E. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem. Biophys. Res. Commun.305, 890–897 (2003).
  • Avota E, Gulbins E, Schneider-Schaulies S. Ceramide generation is essential for enhancement of viral uptake in dendretic cells. PLoS Pathog.7(2), e1001290 (2011).
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol.9, 139–150 (2008).
  • Okino N, He X, Gatt S et al. The reverse activity of human acid ceramidase. J. Biol. Chem.278, 29948–29953 (2003).
  • Ishibashi Y, Nakasone T, Kiyohara M et al. A novel endoglycoceramidase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J. Biol. Chem.282, 11386–11396 (2007).
  • Zhang Y, Li X, Carpinteiro A, Gulbins E. Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J. Immunol.181, 4247–4254 (2008).
  • Zhang Y, Li X, Carpinteiro A et al. Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections. Nat. Med.17(3), 341–346 (2011).
  • Yu H, Zeidan YH, Wu BX et al. Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.41, 367–375 (2009).
  • Perrotta C, Bizzozero L, Cazzato D et al. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J. Biol. Chem.285, 40240–40251 (2010).
  • Edelmann B, Bertsch U, Tchikov V et al. Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J.30, 379–394 (2011).
  • Qiu H, Edmunds T, Baker-Malcolm J et al. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J. Biol. Chem.278, 32744–32752 (2003).
  • Zhang AY, Yi F, Jin S et al. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid. Redox Signal.9, 817–828 (2007).
  • Teichgraber V, Ulrich M, Endlich N et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med.14, 382–391 (2008).
  • Kowalski MP, Pier GB. Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J. Immunol.172, 418–425 (2004).
  • Gadjeva M, Paradis-Bleau C, Priebe GP, Fichorova R, Pier GB. Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J. Immunol.184, 296–302 (2010).
  • Zaas DW, Duncan MJ, Li G, Wright JR, Abraham SN. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J. Biol. Chem.280, 4864–4872 (2005).
  • Bajmoczi M, Gadjeva M, Alper SL, Pier GB, Golan DE. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am. J. Physiol. Cell Physiol.297, C263–C277 (2009).
  • Chidlow JH Jr, Sessa WC. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc. Res.86, 219–225 (2010).
  • Becker KA, Riethmuller J, Luth A et al. Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.42, 716–724 (2010).
  • Becker KA, Tummler B, Gulbins E, Grassmè H. Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochem. Biophys. Res. Commun.403, 368–374 (2010).
  • Ulrich M, Worlitzsch D, Viglio S et al. Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros.9, 217–227 (2010).
  • Zhang Y, Li X, Grassmè H, Doring G, Gulbins E. Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J. Immunol.184, 5104–5111 (2009).
  • Brodlie M, McKean MC, Johnson GE et al. Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med.182, 369–375 (2010).
  • Bodas M, Min T, Mazur S, Vij N. Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J. Immunol.186, 602–613 (2010).
  • Guilbault C, De Sanctis JB, Wojewodka G et al. Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.38, 47–56 (2008).
  • Cottart CH, Bonvin E, Rey C et al. Impact of nutrition on phenotype in Cftr-deficient mice. Pediatr. Res.62, 528–532 (2007).
  • Borowitz D, Durie PR, Clarke LL et al. Gastrointestinal outcomes and confounders in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr.41, 273–285 (2005).
  • Harmon GS, Dumlao DS, Ng DT et al. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice. Nat. Med.16, 313–318 (2010).
  • Perez A, van Heeckeren AM, Nichols D et al. Peroxisome proliferator-activated receptor-γ in cystic fibrosis lung epithelium. Am. J. Physiol. Lung Cell Mol. Physiol.295, L303–L313 (2008).
  • Kornhuber J, Tripal P, Reichel M et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J. Med. Chem.51, 219–237 (2008).
  • Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol. Chem. Hoppe Seyler375, 447–450 (1994).
  • Roth AG, Drescher D, Yang Y et al. Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem. Int. Ed. Engl.48, 7560–7563 (2009).
  • Riethmuller J, Anthonysamy J, Serra E et al. Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell Physiol. Biochem.24, 65–72 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.