160
Views
27
CrossRef citations to date
0
Altmetric
Review

Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine

&
Pages 1203-1217 | Published online: 09 Jan 2014

References

  • Stephens DS. Conquering the meningococcus. FEMS Microbiol. Rev.31(1), 3–14 (2007).
  • Boisier P, Nicolas P, Djibo S et al. Meningococcal meningitis: unprecedented incidence of serogroup X-related cases in 2006 in Niger. Clin. Infect. Dis.44(5), 657–663 (2007).
  • Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet369(9580), 2196–2210 (2007).
  • Wyle FA, Artenstein MS, Brandt BL et al. Immunologic response of man to group B meningococcal polysaccharide vaccines. J. Infect. Dis.126(5), 514–521 (1972).
  • Finne J, Leinonen M, Makela PH. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet2(8346), 355–357 (1983).
  • Boslego J, Garcia J, Cruz C et al. Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Chilean National Committee for Meningococcal Disease. Vaccine13(9), 821–829 (1995).
  • Sierra GV, Campa HC, Varcacel NM et al. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann.14(2), 195–207; discussion 208–110 (1991).
  • de Moraes JC, Perkins BA, Camargo MC et al. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet340(8827), 1074–1078 (1992).
  • Bjune G, Hoiby EA, Gronnesby JK et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet338(8775), 1093–1096 (1991).
  • O’Hallahan J, McNicholas A, Galloway Y, O’Leary E, Roseveare C. Delivering a safe and effective strain-specific vaccine to control an epidemic of group B meningococcal disease. NZ Med. J.122(1291), 48–59 (2009).
  • Kelly C, Arnold R, Galloway Y, O’Hallahan J. A prospective study of the effectiveness of the New Zealand meningococcal B vaccine. Am. J. Epidemiol.166(7), 817–823 (2007).
  • Galloway Y, Stehr-Green P, McNicholas A, O’Hallahan J. Use of an observational cohort study to estimate the effectiveness of the New Zealand group B meningococcal vaccine in children aged under 5 years. Int. J. Epidemiol.38(2), 413–418 (2009).
  • Wong S, Lennon D, Jackson C et al. New Zealand epidemic strain meningococcal B outer membrane vesicle vaccine in children aged 16–24 months. Pediatr. Infect. Dis. J.26(4), 345–350 (2007).
  • Tappero JW, Lagos R, Ballesteros AM et al. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA281(16), 1520–1527 (1999).
  • Feiring B, Fuglesang J, Oster P et al. Persisting immune responses indicating long-term protection after booster dose with meningococcal group B outer membrane vesicle vaccine. Clin. Vaccine Immunol.13(7), 790–796 (2006).
  • Wedege E, Bolstad K, Aase A et al. Functional and specific antibody responses in adult volunteers in New Zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines. Clin. Vaccine Immunol.14(7), 830–838 (2007).
  • Rappuoli R. Reverse vaccinology. Curr. Opin. Microbiol.3(5), 445–450 (2000).
  • Giuliani MM, Adu-Bobie J, Comanducci M et al. A universal vaccine for serogroup B meningococcus. Proc. Natl Acad. Sci. USA103(29), 10834–10839 (2006).
  • Miller E, Pollard AJ, Borrow R et al. Safety and immunogenicity of Novartis meningococcal serogroup B vaccine after three doses administered in infancy. Presented at: 26th Annual Meeting of the European Society for Paediatric Infectious Diseases (ESPID). Graz, Austria, 13–17 May 2008.
  • Fletcher LD, Bernfield L, Barniak V et al. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect. Immun.72(4), 2088–2100 (2004).
  • Nissen M, Marshall H, Richmond P, Lambert S, Roberton D, Gruber W. A randomized, placebo-controlled, double-blind, Phase 1 trial of ascending doses of meningococcal group B rLP2086 vaccine. Presented at: 26th Annual Meeting of the European Society for Paediatric Infectious Diseases (ESPID). Graz, Austria, 13–17 May 2008.
  • Maiden MC, Bygraves JA, Feil E et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA95(6), 3140–3145 (1998).
  • Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol.11(10), 479–487 (2003).
  • Bygraves JA, Urwin R, Fox AJ et al. Population genetic and evolutionary approaches to analysis of Neisseria meningitidis isolates belonging to the ET-5 complex. J. Bacteriol.181(18), 5551–5556 (1999).
  • Caugant DA. Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect. Genet. Evol.8(5), 558–565 (2008).
  • Buckee CO, Jolley KA, Recker M et al. Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc. Natl Acad. Sci. USA105(39), 15082–15087 (2008).
  • Lucidarme J, Comanducci M, Findlow J et al. Characterization of fHbp, NHBA (GNA2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales. J. Clin. Microbiol.47(11), 3577–3585 (2009).
  • Jolley KA, Brehony C, Maiden MC. Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol. Rev.31(1), 89–96 (2007).
  • Caugant DA, Maiden MC. Meningococcal carriage and disease – population biology and evolution. Vaccine27(Suppl. 2), B64–B70 (2009).
  • Schoen C, Blom J, Claus H et al. Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc. Natl Acad. Sci. USA105(9), 3473–3478 (2008).
  • Yazdankhah SP, Lindstedt BA, Caugant DA. Use of variable-number tandem repeats to examine genetic diversity of Neisseria meningitidis. J. Clin. Microbiol.43(4), 1699–1705 (2005).
  • Tettelin H, Saunders NJ, Heidelberg J et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science287(5459), 1809–1815 (2000).
  • Ambur OH, Frye SA, Tonjum T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol.189(5), 2077–2085 (2007).
  • Hanage WP, Fraser C, Spratt BG. The impact of homologous recombination on the generation of diversity in bacteria. J. Theor. Biol.239(2), 210–219 (2006).
  • Saunders NJ, Jeffries AC, Peden JF et al. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol. Microbiol.37(1), 207–215 (2000).
  • Bowler LD, Zhang QY, Riou JY, Spratt BG. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J. Bacteriol.176(2), 333–337 (1994).
  • Feil EJ, Maiden MC, Achtman M, Spratt BG. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol.16(11), 1496–1502 (1999).
  • Lavezzo E, Toppo S, Barzon L et al. Draft genome sequences of two Neisseria meningitidis serogroup C clinical isolates. J. Bacteriol. DOI: 10.1128/JB.00789–00710 (2010) (Epub ahead of print).
  • Harrison LH, Jolley KA, Shutt KA et al. Antigenic shift and increased incidence of meningococcal disease. J. Infect. Dis.193(9), 1266–1274 (2006).
  • Harrison LH. Prospects for vaccine prevention of meningococcal infection. Clin. Microbiol. Rev.19(1), 142–164 (2006).
  • Swartley JS, Marfin AA, Edupuganti S et al. Capsule switching of Neisseria meningitidis. Proc. Natl Acad. Sci. USA94(1), 271–276 (1997).
  • Kriz P, Kriz B, Svandova E, Musilek M. Antimeningococcal herd immunity in the Czech Republic – influence of an emerging clone, Neisseria meningitidis ET-15/37. Epidemiol. Infect.123(2), 193–200 (1999).
  • Marri PR, Paniscus M, Weyand NJ et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One5(7), e11835 (2010).
  • De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP. Asymmetrical distribution of Neisseria miniature insertion sequence DNA repeats among pathogenic and nonpathogenic Neisseria strains. Infect. Immun.71(7), 4217–4221 (2003).
  • Liu SV, Saunders NJ, Jeffries A, Rest RF. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J. Bacteriol.184(22), 6163–6173 (2002).
  • Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM. Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol. Microbiol.54(3), 731–741 (2004).
  • Schoen C, Tettelin H, Parkhill J, Frosch M. Genome flexibility in Neisseria meningitidis. Vaccine27(Suppl. 2), B103–B111 (2009).
  • Zhou J, Spratt BG. Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Mol. Microbiol.6(15), 2135–2146 (1992).
  • Holmes EC, Urwin R, Maiden MC. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol.16(6), 741–749 (1999).
  • Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol.4(1), 24–33 (1994).
  • Hammerschmidt S, Hilse R, van Putten JP, Gerardy-Schahn R, Unkmeir A, Frosch M. Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J.15(1), 192–198 (1996).
  • Sawaya R, Arhin FF, Moreau F, Coulton JW, Mills EL. Mutational analysis of the promoter region of the porA gene of Neisseria meningitidis. Gene233(1–2), 49–57 (1999).
  • Snyder LA, Butcher SA, Saunders NJ. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology147(Pt 8), 2321–2332 (2001).
  • Metruccio MM, Pigozzi E, Roncarati D et al. A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog.5(12), e1000710 (2009).
  • van der Ende A, Hopman CT, Dankert J. Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect. Immun.68(12), 6685–6690 (2000).
  • Carson SD, Stone B, Beucher M, Fu J, Sparling PF. Phase variation of the gonococcal siderophore receptor FetA. Mol. Microbiol.36(3), 585–593 (2000).
  • Sarkari J, Pandit N, Moxon ER, Achtman M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol.13(2), 207–217 (1994).
  • Martin P, Makepeace K, Hill SA, Hood DW, Moxon ER. Microsatellite instability regulates transcription factor binding and gene expression. Proc. Natl Acad. Sci. USA102(10), 3800–3804 (2005).
  • Schielke S, Huebner C, Spatz C et al. Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family. Mol. Microbiol.72(4), 1054–1067 (2009).
  • Fox KL, Srikhanta YN, Jennings MP. Phase variable type III restriction-modification systems of host-adapted bacterial pathogens. Mol. Microbiol.65(6), 1375–1379 (2007).
  • Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat. Rev. Microbiol.8(3), 196–206 (2010).
  • Davila S, Wright VJ, Khor CC et al. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat. Genet.42, 772–776 (2010).
  • Caugant DA, Froholm LO, Bovre K et al. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc. Natl Acad. Sci. USA83(13), 4927–4931 (1986).
  • Vogel U, Frosch M. Mechanisms of neisserial serum resistance. Mol. Microbiol.32(6), 1133–1139 (1999).
  • Walport MJ. Complement. First of two parts. N. Engl. J. Med.344(14), 1058–1066 (2001).
  • Andersen J, Berthelsen L, Bech Jensen B, Lind I. Dynamics of the meningococcal carrier state and characteristics of the carrier strains: a longitudinal study within three cohorts of military recruits. Epidemiol. Infect.121(1), 85–94 (1998).
  • Blackwell CC, Weir DM, James VS et al. Secretor status, smoking and carriage of Neisseria meningitidis. Epidemiol. Infect.104(2), 203–209 (1990).
  • Kriz P, Bobak M, Kriz B. Parental smoking, socioeconomic factors, and risk of invasive meningococcal disease in children: a population based case–control study. Arch. Dis. Child.83(2), 117–121 (2000).
  • Nassif X, So M. Interaction of pathogenic neisseriae with nonphagocytic cells. Clin. Microbiol. Rev.8(3), 376–388 (1995).
  • Johansson L, Rytkonen A, Bergman P et al. CD46 in meningococcal disease. Science301(5631), 373–375 (2003).
  • Tinsley CR, Heckels JE. Variation in the expression of pili and outer membrane protein by Neisseria meningitidis during the course of meningococcal infection. J. Gen. Microbiol.132(9), 2483–2490 (1986).
  • Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med.129(6), 1327–1348 (1969).
  • Sjolinder H, Jonsson AB. Imaging of disease dynamics during meningococcal sepsis. PLoS One2(2), e241 (2007).
  • Dehio C, Gray-Owen SD, Meyer TF. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol.6(12), 489–495 (1998).
  • Deghmane AE, Petit S, Topilko A et al. Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO J.19(5), 1068–1078 (2000).
  • Taha MK, Morand PC, Pereira Y et al. Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol. Microbiol.28(6), 1153–1163 (1998).
  • de Vries FP, Cole R, Dankert J, Frosch M, van Putten JP. Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol. Microbiol.27(6), 1203–1212 (1998).
  • Porat N, Apicella MA, Blake MS. A lipooligosaccharide-binding site on HepG2 cells similar to the gonococcal opacity-associated surface protein Opa. Infect. Immun.63(6), 2164–2172 (1995).
  • Grifantini R, Bartolini E, Muzzi A et al. Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat. Biotechnol.20(9), 914–921 (2002).
  • Williams JN, Skipp PJ, O’Connor CD, Christodoulides M, Heckels JE. Immunoproteomic analysis of the development of natural immunity in subjects colonized by Neisseria meningitidis reveals potential vaccine candidates. Infect. Immun.77(11), 5080–5089 (2009).
  • de Filippis I. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins. J. Med. Microbiol.58(Pt 9), 1127–1132 (2009).
  • Halperin SA, Langley JM, Smith B et al. Phase 1 first-in-human studies of the reactogenicity and immunogenicity of a recombinant meningococcal NspA vaccine in healthy adults. Vaccine25(3), 450–457 (2007).
  • Jacobsson S, Hedberg ST, Molling P et al. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease. Vaccine27(10), 1579–1584 (2009).
  • West D, Reddin K, Matheson M et al. Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect. Immun.69(3), 1561–1567 (2001).
  • Ferrari G, Garaguso I, Adu-Bobie J et al. Outer membrane vesicles from group B Neisseria meningitidis Δgna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics6(6), 1856–1866 (2006).
  • Snyder LA, Saunders NJ. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics7, 129 (2006).
  • Suker J, Feavers IM, Maiden MC. Monoclonal antibody recognition of members of the meningococcal P1.10 variable region family: implications for serological typing and vaccine design. Microbiology142(Pt 1), 63–69 (1996).
  • McGuinness BT, Clarke IN, Lambden PR et al. Point mutation in meningococcal porA gene associated with increased endemic disease. Lancet337(8740), 514–517 (1991).
  • van der Ende A, Hopman CT, Dankert J. Deletion of porA by recombination between clusters of repetitive extragenic palindromic sequences in Neisseria meningitidis. Infect. Immun.67(6), 2928–2934 (1999).
  • van der Ende A, Hopman CT, Zaat S, Essink BB, Berkhout B, Dankert J. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the -10 and -35 regions of the promoter. J. Bacteriol.177(9), 2475–2480 (1995).
  • Arhin FF, Moreau F, Coulton JW, Mills EL. Sequencing of porA from clinical isolates of Neisseria meningitidis defines a subtyping scheme and its genetic regulation. Can. J. Microbiol.44(1), 56–63 (1998).
  • Cartwright K, Morris R, Rumke H et al. Immunogenicity and reactogenicity in UK infants of a novel meningococcal vesicle vaccine containing multiple class 1 (PorA) outer membrane proteins. Vaccine17(20–21), 2612–2619 (1999).
  • de Kleijn ED, de Groot R, Labadie J et al. Immunogenicity and safety of a hexavalent meningococcal outer-membrane-vesicle vaccine in children of 2–3 and 7–8 years of age. Vaccine18(15), 1456–1466 (2000).
  • Martin SL, Borrow R, van der Ley P, Dawson M, Fox AJ, Cartwright KA. Effect of sequence variation in meningococcal PorA outer membrane protein on the effectiveness of a hexavalent PorA outer membrane vesicle vaccine. Vaccine18(23), 2476–2481 (2000).
  • van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. Topology of outer membrane porins in pathogenic Neisseria spp. Infect. Immun.59(9), 2963–2971 (1991).
  • Zapata GA, Vann WF, Rubinstein Y, Frasch CE. Identification of variable region differences in Neisseria meningitidis class 3 protein sequences among five group B serotypes. Mol. Microbiol.6(23), 3493–3499 (1992).
  • Sacchi CT, Lemos AP, Whitney AM et al. Correlation between serological and sequencing analyses of the PorB outer membrane protein in the Neisseria meningitidis serotyping system. Clin. Diagn. Lab. Immunol.5(3), 348–354 (1998).
  • Maiden MC. Population genetics of a transformable bacterium: the influence of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS Microbiol. Lett.112(3), 243–250 (1993).
  • Dyet KH, Martin DR. Clonal analysis of the serogroup B meningococci causing New Zealand’s epidemic. Epidemiol. Infect.134(2), 377–383 (2006).
  • Dyet KH, Martin DR. Sequence variation in the porB gene from B:P1.4 meningococci causing New Zealand’s epidemic. J. Clin. Microbiol.43(2), 838–842 (2005).
  • Rosenqvist E, Hoiby EA, Wedege E, Kusecek B, Achtman M. The 5C protein of Neisseria meningitidis is highly immunogenic in humans and induces bactericidal antibodies. J. Infect. Dis.167(5), 1065–1073 (1993).
  • Jolley KA, Appleby L, Wright JC, Christodoulides M, Heckels JE. Immunization with recombinant Opc outer membrane protein from Neisseria meningitidis: influence of sequence variation and levels of expression on the bactericidal immune response against meningococci. Infect. Immun.69(6), 3809–3816 (2001).
  • Tinsley CR, Virji M, Heckels JE. Antibodies recognizing a variety of different structural motifs on meningococcal Lip antigen fail to demonstrate bactericidal activity. J. Gen. Microbiol.138(11), 2321–2328 (1992).
  • Munkley A, Tinsley CR, Virji M, Heckels JE. Blocking of bactericidal killing of Neisseria meningitidis by antibodies directed against class 4 outer membrane protein. Microb. Pathog.11(6), 447–452 (1991).
  • Lissolo L, Maitre-Wilmotte G, Dumas P, Mignon M, Danve B, Quentin-Millet MJ. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect. Immun.63(3), 884–890 (1995).
  • Danve B, Lissolo L, Mignon M et al. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine11(12), 1214–1220 (1993).
  • Ala’Aldeen DA, Borriello SP. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine14(1), 49–53 (1996).
  • Heckels JE. Structure and function of pili of pathogenic Neisseria species. Clin. Microbiol. Rev.2(Suppl.), S66–S73 (1989).
  • Cehovin A, Winterbotham M, Lucidarme J et al. Sequence conservation of pilus subunits in Neisseria meningitidis. Vaccine28(30), 4817–4826 (2010).
  • Cehovin A, Pelicic V. Minor pilins as novel vaccine candidates against Neisseria meningitidis. Presented at: Meningitis Research Foundation’s 2009 Conference – Meningitis and Septicemia in Children and Adults. The Royal Society of Medicine, London, UK, 11–12 November 2009.
  • Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J. Exp. Med.168(1), 107–126 (1988).
  • Drabick JJ, Brandt BL, Moran EE, Saunders NB, Shoemaker DR, Zollinger WD. Safety and immunogenicity testing of an intranasal group B meningococcal native outer membrane vesicle vaccine in healthy volunteers. Vaccine18(1–2), 160–172 (1999).
  • Zollinger WD, Moran EE, Devi SJ, Frasch CE. Bactericidal antibody responses of juvenile rhesus monkeys immunized with group B Neisseria meningitidis capsular polysaccharide-protein conjugate vaccines. Infect. Immun.65(3), 1053–1060 (1997).
  • Estabrook MM, Jarvis GA, McLeod Griffiss J. Affinity-purified human immunoglobulin G that binds a lacto-N-neotetraose-dependent lipooligosaccharide structure is bactericidal for serogroup B Neisseria meningitidis. Infect. Immun.75(2), 1025–1033 (2007).
  • Weynants V, Denoel P, Devos N et al. Genetically modified L3,7 and L2 lipooligosaccharides from Neisseria meningitidis serogroup B confer a broad cross-bactericidal response. Infect. Immun.. 77(5), 2084–2093 (2009).
  • Urwin R, Russell JE, Thompson EA, Holmes EC, Feavers IM, Maiden MC. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect. Immun.72(10), 5955–5962 (2004).
  • Feavers IM, Pizza M. Meningococcal protein antigens and vaccines. Vaccine27(Suppl. 2), B42–B50 (2009).
  • Gupta S, Maiden MC. Exploring the evolution of diversity in pathogen populations. Trends Microbiol.9(4), 181–185 (2001).
  • Achtman M, van der Ende A, Zhu P et al. Molecular epidemiology of serogroup A meningitis in Moscow, 1969 to 1997. Emerg. Infect. Dis.7(3), 420–427 (2001).
  • van den Dobbelsteen GP, van Dijken HH, Pillai S, van Alphen L. Immunogenicity of a combination vaccine containing pneumococcal conjugates and meningococcal PorA OMVs. Vaccine25(13), 2491–2496 (2007).
  • Trotter CL, Ramsay ME. Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol. Rev.31(1), 101–107 (2007).
  • Claassen I, Meylis J, van der Ley P et al. Production, characterization and control of a Neisseria meningitidis hexavalent class 1 outer membrane protein containing vesicle vaccine. Vaccine14(10), 1001–1008 (1996).
  • Weynants VE, Feron CM, Goraj KK et al. Additive and synergistic bactericidal activity of antibodies directed against minor outer membrane proteins of Neisseria meningitidis. Infect. Immun.75(11), 5434–5442 (2007).
  • Zollinger WD, Donets MA, Schmiel DH et al. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine28(31), 5057–5067 (2010).
  • Oliver KJ, Reddin KM, Bracegirdle P et al. Neisseria lactamica protects against experimental meningococcal infection. Infect. Immun.70(7), 3621–3626 (2002).
  • Sardinas G, Reddin K, Pajon R, Gorringe A. Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. Vaccine24(2), 206–214 (2006).
  • Gorringe AR, Taylor S, Brookes C et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccine Immunol.16(8), 1113–1120 (2009).
  • Yazdankhah SP, Caugant DA. Neisseria meningitidis: an overview of the carriage state. J. Med. Microbiol.53(Pt 9), 821–832 (2004).
  • Maiden MC, Stuart JM. Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet359(9320), 1829–1831 (2002).
  • Rosenqvist E, Bjune G, Feiring B et al. Changes in carrier status of Neisseria meningitidis in teenagers during a group B outer membrane vaccination trial in Norway. In: Proceedings of the 8th International Pathogenic Neisseria Conference. Conde-Glez CJ, Morse S, Rice P, Sparling F, Calderon E (Eds). Instituto Nacional de Salud Publica-Morelos-Mexico, Mexico, 895–901 (1994).
  • Comanducci M, Bambini S, Brunelli B et al. NadA, a novel vaccine candidate of Neisseria meningitidis. J. Exp. Med.195(11), 1445–1454 (2002).
  • Comanducci M, Bambini S, Caugant DA et al. NadA diversity and carriage in Neisseria meningitidis. Infect. Immun.72(7), 4217–4223 (2004).
  • Bambini S, Muzzi A, Olcen P, Rappuoli R, Pizza M, Comanducci M. Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. Vaccine27(21), 2794–2803 (2009).
  • Findlow J, Borrow R, Snape MD et al. Serum bactericidal antibody against an extended panel of meningococcal strains following immunisation with novel serogroup B meningococcal vaccines in infancy. Clin. Infect. Dis. (In Press) (2010).
  • Beernink PT, Welsch JA, Harrison LH, Leipus A, Kaplan SL, Granoff DM. Prevalence of factor H-binding protein variants and NadA among meningococcal group B isolates from the United States: implications for the development of a multicomponent group B vaccine. J. Infect. Dis.195(10), 1472–1479 (2007).
  • Giuliani MM, Biolchi A, Serruto D et al. Measuring antigen-specific bactericidal responses to a multicomponent vaccine against serogroup B meningococcus. Vaccine28(31), 5023–5030 (2010).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science287(5459), 1816–1820 (2000).
  • Lucidarme J, Comanducci M, Findlow J et al. Characterisation of fHbp, nhba (gna2132), nadA, porA and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008, and potential coverage of an investigational group B meningococcal vaccine. Clin. Vaccine Immunol.17(6), 919–929 (2010).
  • Serruto D, Spadafina T, Ciucchi L et al. Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc. Natl Acad. Sci. USA107(8), 3770–3775 (2010).
  • Welsch JA, Moe GR, Rossi R, Adu-Bobie J, Rappuoli R, Granoff DM. Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. J. Infect. Dis.188(11), 1730–1740 (2003).
  • Plested JS, Granoff DM. Vaccine-induced opsonophagocytic immunity to Neisseria meningitidis group B. Clin. Vaccine Immunol.15(5), 799–804 (2008).
  • Masignani V, Comanducci M, Giuliani MM et al. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J. Exp. Med.197(6), 789–799 (2003).
  • Madico G, Welsch JA, Lewis LA et al. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol.177(1), 501–510 (2006).
  • Schneider MC, Exley RM, Chan H et al. Functional significance of factor H binding to Neisseria meningitidis. J. Immunol.176(12), 7566–7575 (2006).
  • Schneider MC, Prosser BE, Caesar JJ et al. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature458(7240), 890–893 (2009).
  • Mascioni A, Bentley BE, Camarda R et al. Structural basis for the immunogenic properties of the meningococcal vaccine candidate LP2086. J. Biol. Chem.284(13), 8738–8746 (2009).
  • Beernink PT, Leipus A, Granoff DM. Rapid genetic grouping of factor H-binding protein (genome-derived neisserial antigen 1870), a promising group B meningococcal vaccine candidate. Clin. Vaccine Immunol.13(7), 758–763 (2006).
  • Murphy E, Andrew L, Lee KL et al. Sequence diversity of the factor H binding protein vaccine candidate in epidemiologically relevant strains of serogroup B Neisseria meningitidis. J. Infect. Dis.200(3), 379–389 (2009).
  • Beernink PT, Granoff DM. The modular architecture of meningococcal factor H-binding protein. Microbiology155(Pt 9), 2873–2883 (2009).
  • Pajon R, Beernink PT, Harrison LH, Granoff DM. Frequency of factor H-binding protein modular groups and susceptibility to cross-reactive bactericidal activity in invasive meningococcal isolates. Vaccine28(9), 2122–2129 (2010).
  • Bigwood R, Feavers I, Chan H, Vipond C. Exploring the expression levels of recombinant antigens and the murine response to Novartis recombinant MenB investigational vaccine. Presented at: Meningitis Research Foundation’s Conference. London, UK, 11–12 November 2009.
  • Snape MD, Dawson T, Oster P et al. Immunogenicity of two investigational serogroup B meningococcal vaccines in the first year of life. A randomized comparative trial. Pediatr. Infect. Dis. J. (In Press) (2010).
  • Jiang HQ, Hoiseth SK, Harris SL et al. Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine28(37), 6086–6093(2010).
  • Richmond P, Marshall HS, Nissen MD et al. A randomized, observed-blinded, active control, Phase 1 trial of meningococcal serogroup B rLP2086 vaccine in healthy children and adolescent aged 8 to 14 years. Presented at: International Pathogenic Neisseria Conference. Rotterdam, The Netherlands, 7–12 September 2008.
  • Beernink PT, Shaughnessy J, Ram S, Granoff DM. Impaired immunogenicity of a meningococcal factor H-binding protein vaccine engineered to eliminate factor H binding. Clin. Vaccine Immunol.17(7), 1074–1078 (2010).
  • Lewis LA, Ngampasutadol J, Wallace R, Reid JEA, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog.6(7), e1001027 (2010).
  • Cummings CA, Relman DA. Using DNA microarrays to study host–microbe interactions. Emerg. Infect. Dis.6(5), 513–525 (2000).
  • Schoolnik GK. Microarray analysis of bacterial pathogenicity. Adv. Microb. Physiol.46, 1–45 (2002).
  • Kurz S, Hubner C, Aepinus C et al. Transcriptome-based antigen identification for Neisseria meningitidis. Vaccine21(7–8), 768–775 (2003).
  • Bernardini G, Braconi D, Santucci A. The analysis of Neisseria meningitidis proteomes: reference maps and their applications. Proteomics7(16), 2933–2946 (2007).
  • Mignogna G, Giorgi A, Stefanelli P et al. Inventory of the proteins in Neisseria meningitidis serogroup B strain MC58. J. Proteome Res.4(4), 1361–1370 (2005).
  • Uli L, Castellanos-Serra L, Betancourt L et al. Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics6(11), 3389–3399 (2006).
  • Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ 98/254. Proteomics6(11), 3400–3413 (2006).
  • Sanchez S, Abel A, Arenas J, Criado MT, Ferreiros CM. Cross-linking analysis of antigenic outer membrane protein complexes of Neisseria meningitidis. Res. Microbiol.157(2), 136–142 (2006).
  • Serruto D, Rappuoli R. Post-genomic vaccine development. FEBS Lett.580(12), 2985–2992 (2006).
  • Ronning DR, Klabunde T, Besra GS, Vissa VD, Belisle JT, Sacchettini JC. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat. Struct. Biol.7(2), 141–146 (2000).
  • Cantini F, Savino S, Scarselli M et al. Solution structure of the immunodominant domain of protective antigen GNA1870 of Neisseria meningitidis. J. Biol. Chem.281(11), 7220–7227 (2006).
  • Cantini F, Veggi D, Dragonetti S et al. Solution structure of the factor H-binding protein, a survival factor and protective antigen of Neisseria meningitidis. J. Biol. Chem.284(14), 9022–9026 (2009).
  • Mora M, Donati C, Medini D, Covacci A, Rappuoli R. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr. Opin Microbiol.9(5), 532–536 (2006).
  • Grifantini R, Bartolini E, Muzzi A et al. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: from basic research to vaccine development. Ann NY Acad. Sci.975, 202–216 (2002).
  • Sun YH, Bakshi S, Chalmers R, Tang CM. Functional genomics of Neisseria meningitidis pathogenesis. Nat. Med.6(11), 1269–1273 (2000).
  • Perrin A, Bonacorsi S, Carbonnelle E et al. Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species. Infect. Immun.70(12), 7063–7072 (2002).
  • Heckels JE, Williams JN. The influence of genomics and proteomics on the development of potential vaccines against meningococcal infection. Genome Med.2(7), 43 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.