52
Views
6
CrossRef citations to date
0
Altmetric
Review

Current vaccine updates for lung cancer

, &
Pages 323-335 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2006. CA Cancer J. Clin.56(2), 106–130 (2006).
  • Naruke T, Goya T, Tsuchiya R, Suemasu K. Prognosis and survival in resected lung carcinoma based on the new international staging system. J. Thorac. Cardiovasc. Surg.96(3), 440–447 (1988).
  • Molina JR, Adjei AA, Jett JR. Advances in chemotherapy of non-small cell lung cancer. Chest130(4), 1211–1219 (2006).
  • Krasna MJ, Reed CE, Nugent WC et al. Lung cancer staging and treatment in multidisciplinary trials: cancer and leukemia group B co-operative group approach. Ann. Thorac. Surg.68, 201–207 (1999).
  • Brichard VG, Lejeune D. Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin. Biol. Ther.8(7), 951–968 (2008).
  • Bezjak A, Tu D, Seymour L et al. Symptom improvement in lung cancer patients treated with erlotinib: quality of life analysis of the National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol.24(24), 3831–3837 (2006).
  • Woo EY, Yeh H, Chu CS et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168(9), 4272–4276 (2002).
  • Kakimi K, Nakajima J, Wada H. Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer65(1), 1–8 (2009).
  • Galceran J, Marcos-Gragera R, Soler M et al. Cancer incidence in AIDS patients in Catalonia, Spain. Eur. J. Cancer43(6), 1085–1091 (2007).
  • Chaturvedi AK, Pfeiffer RM, Chang L, Goedert JJ, Biggar RJ, Engels EA. Elevated risk of lung cancer among people with AIDS. AIDS21(2), 207–213 (2007).
  • Yoshino I, Yano T, Murata M et al. Tumor-reactive T-cells accumulate in lung cancer tissues but fail to respond due to tumor cell-derived factor. Cancer Res.52(4), 775–781 (1992).
  • McCracken JD, Chen T, White J et al. Combination chemotherapy, radiotherapy, and BCG immunotherapy in limited small-cell carcinoma of the lung: a Southwest Oncology Group Study. Cancer49(11), 2252–2258 (1982).
  • Matthay RA, Mahler DA, Beck GJ et al. Intratumoral Bacillus Calmette-Guérin immunotherapy prior to surgery for carcinoma of the lung: results of a prospective randomized trial. Cancer Res.46(11), 5963–5968 (1986).
  • Van den Heuvel MM, Burgers SA, van Zandwijk N. Immunotherapy in non-small-cell lung carcinoma: from inflammation to vaccination. Clin. Lung Cancer10(2), 99–105 (2009).
  • Lucas S, Coulie PG. About human tumor antigens to be used in immunotherapy. Semin. Immunol.20(5), 301–307 (2008).
  • Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J. Thorac. Oncol.3(6 Suppl. 2), S164–S170 (2008).
  • Raez LE, Fein S, Podack ER. Lung cancer immunotherapy. Clin. Med. Res.3(4), 221–228 (2005).
  • Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother.54(3), 187–207 (2005).
  • Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol.21(12), 2415–2432 (2003).
  • Dredge K, Marriott JB, Todryk SM, Dalgleish AG. Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol. Immunother.51(10), 521–531 (2002).
  • Ho C, Ochsenbein AF, Gautschi O, Davies AM. Early clinical trial experience with vaccine therapies in non-small-cell lung cancer. Clin. Lung Cancer9(Suppl. 1), S20–S27 (2008).
  • Pozniak A, Stanford JL, Grange JM. Mycobacterium vaccae immunotherapy. Lancet338(8781), 1533–1534 (1991).
  • Prior JG, Khan AA, Cartwright KA, Jenkins PA, Stanford JL. Immunotherapy with Mycobacterium vaccae combined with second line chemotherapy in drug-resistant abdominal tuberculosis. J. Infect.31(1), 59–61 (1995).
  • Shirtcliffe PM, Easthope SE, Cheng S et al. The effect of delipidated deglycolipidated (DDMV) and heat-killed Mycobacterium vaccae in asthma. Am. J. Respir. Crit. Care Med.163(6), 1410–1414 (2001).
  • Altundag K, Mohamed AS, Altundag O, Silay YS, Gunduz E, Demircan K. SRL172 (killed Mycobacterium vaccae) may augment the efficacy of trastuzumab in metastatic breast cancer patients. Med. Hypotheses64(2), 248–251 (2005).
  • Grange JM, Bottasso O, Stanford CA, Stanford JL. The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine26(39), 4984–4990 (2008).
  • O’Brien ME, Saini A, Smith IE et al. A randomized Phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br. J. Cancer83(7), 853–857 (2000).
  • O’Brien ME, Anderson H, Kaukel E et al. SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: Phase III results. Ann. Oncol.15(6), 906–914 (2004).
  • Stanford JL, Stanford CA, O’Brien ME, Grange JM. Successful immunotherapy with Mycobacterium vaccae in the treatment of adenocarcinoma of the lung. Eur. J. Cancer44(2), 224–227 (2008).
  • Morse MA, Clay TM, Lyerly HK. Handbook of Cancer Vaccines. Humana Press Inc., NJ, USA (2004).
  • Brichard VG, Lejeune D. GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine25(Suppl. 2), B61–B71 (2007).
  • Atanackovic D, Altorki NK, Stockert E et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J. Immunol.172(5), 3289–3296 (2004).
  • Vansteenkiste J, Betticher D, Eberhardt W, De Leyn P. Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage IIIA-N2 non-small cell lung cancer. J. Thorac. Oncol.2(8), 684–685 (2007).
  • Atanackovic D, Altorki NK, Cao Y et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl Acad. USA105(5), 1650–1655 (2008).
  • Ho SB, Niehans GA, Lyftogt C et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res.53(3), 641–651 (1993).
  • Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv. Immunol.82, 249–293 (2004).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • Gonzalez G, Crombet T, Catala M et al. A novel cancer vaccine composed of human-recombinant epidermal growth factor linked to a carrier protein: report of a pilot clinical trial. Ann. Oncol.9(4), 431–435 (1998).
  • Bass KK, Mastrangelo MJ. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol. Immunother.47(1), 1–12 (1998).
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin. Cancer Res.13(15 Pt 2), S4652–S4654 (2007).
  • Ramlau R, Quoix E, Rolski J et al. A Phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J. Thorac. Oncol.3(7), 735–744 (2008).
  • Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene19(56), 6550–6565 (2000).
  • Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V, Herbst R. Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin. Cancer Res.12(14 Pt 2), S4441–S4445 (2006).
  • Gonzalez G, Crombet T, Torres F et al. Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy. Ann. Oncol.14, 461–466 (2003).
  • Neninger Vinageras E, de la Torre A, Osorio Rodriguez M et al. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J. Clin. Oncol.26(9), 1452–1458 (2008).
  • Neninger E, Verdecia BG, Crombet T et al. Combining an EGF-based cancer vaccine with chemotherapy in advanced nonsmall cell lung cancer. J. Immunother.32(1), 92–99 (2009).
  • West HJ. Novel targeted agents for lung cancer. Clin. Lung Cancer10(Suppl. 1), S41–S46 (2009).
  • Schroers R, Shen L, Rollins L et al. Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin. Cancer Res.9(13), 4743–4755 (2003).
  • Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity10(6), 673–679 (1999).
  • Kokhaei P, Palma M, Hansson L, Osterborg A, Mellstedt H, Choudhury A. Telomerase (hTERT 611–626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp. Hematol.35(2), 297–304 (2007).
  • Bernhardt SL, Gjertsen MK, Trachsel S et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating Phase I/II study. Br. J. Cancer95(11), 1474–1482 (2006).
  • Brunsvig PF, Aamdal S, Gjertsen MK et al. Telomerase peptide vaccination: a Phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother.55(12), 1553–1564 (2006).
  • Kyte JA. Cancer vaccination with telomerase peptide GV1001. Expert Opin. Investig. Drugs18(5), 687–694 (2009).
  • Malykh YN, Schauer R, Shaw L. N-glycolylneuraminic acid in human tumours. Biochimie83(7), 623–634 (2001).
  • Vazquez AM, Gabri MR, Hernandez AM et al. Antitumor properties of an anti-idiotypic monoclonal antibody in relation to N-glycolyl-containing gangliosides. Oncol. Rep.7(4), 751–756 (2000).
  • Irie A, Suzuki A. CMP-N-acetylneuraminic acid hydroxylase is exclusively inactive in humans. Biochem. Biophys. Res. Commun.248(2), 330–333 (1998).
  • Vazquez AM, Perez A, Hernandez AM et al. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybridoma17(6), 527–534 (1998).
  • Alfonso M, Diaz A, Hernandez AM et al. An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J. Immunol.168(5), 2523–2529 (2002).
  • Neninger E, Diaz RM, de la Torre A et al. Active immunotherapy with 1E10 anti-idiotype vaccine in patients with small cell lung cancer: report of a Phase I trial. Cancer Biol. Ther.6(2), 145–150 (2007).
  • Diaz A, Alfonso M, Alonso R et al. Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin. Immunol.107(2), 80–89 (2003).
  • Alfonso S, Diaz RM, de la Torre A et al. 1E10 anti-idiotype vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol. Ther.6(12), 1847–1852 (2007).
  • Hernandez AM, Toledo D, Martinez D et al. Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J. Immunol.181(9), 6625–6634 (2008).
  • Slodkowska J, Szturmowicz M, Rudzinski P et al. Expression of CEA and trophoblastic cell markers by lung carcinoma in association with histological characteristics and serum marker levels. Eur. J. Cancer Prev.7(1), 51–60 (1998).
  • Fijolek J, Wiatr E, Rowinska-Zakrzewska E et al. p53 and HER2/neu expression in relation to chemotherapy response in patients with non-small cell lung cancer. Int. J. Biol. Markers21(2), 81–87 (2006).
  • Tsao MS, Aviel-Ronen S, Ding K et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J. Clin. Oncol.25(33), 5240–5247 (2007).
  • Brabender J, Danenberg KD, Metzger R et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res.7(7), 1850–1855 (2001).
  • Vallbohmer D, Brabender J, Yang DY et al. Sex differences in the predictive power of the molecular prognostic factor HER2/neu in patients with non-small-cell lung cancer. Clin. Lung Cancer7(5), 332–337 (2006).
  • Sienel W, Varwerk C, Linder A et al. Melanoma associated antigen (MAGE)-A3 expression in stages I and II non-small cell lung cancer: results of a multi-center study. Eur. J. Cardiothorac. Surg.25(1), 131–134 (2004).
  • Marshall JL, Hoyer RJ, Toomey MA et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.18(23), 3964–3973 (2000).
  • Fong L, Hou Y, Rivas A et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. USA98(15), 8809–8814 (2001).
  • Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest.107(4), 477–484 (2001).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med.4(3), 321–327 (1998).
  • Arlen P, Tsang KY, Marshall JL et al. The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide vs. recombinant poxvirus vaccines. Cancer Immunol. Immunother.49(10), 517–529 (2000).
  • Horig H, Lee DS, Conkright W et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol. Immunother.49(9), 504–514 (2000).
  • Vierboom MP, Nijman HW, Offringa R et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J. Exp. Med.186(5), 695–704 (1997).
  • Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ. Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int. J. Cancer87(2), 253–260 (2000).
  • Rosenwirth B, Kuhn EM, Heeney JL et al. Safety and immunogenicity of ALVAC wild-type human p53 (vCP207) by the intravenous route in rhesus macaques. Vaccine19(13–14), 1661–1670 (2001).
  • van der Burg SH, de Cock K, Menon AG et al. Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur. J. Immunol.31(1), 146–155 (2001).
  • Ferries E, Connan F, Pages F et al. Identification of p53 peptides recognized by CD8+ T lymphocytes from patients with bladder cancer. Hum. Immunol.62(8), 791–798 (2001).
  • Tartaglia J, Bonnet MC, Berinstein N, Barber B, Klein M, Moingeon P. Therapeutic vaccines against melanoma and colorectal cancer. Vaccine19(17–19), 2571–2575 (2001).
  • van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038), 1643–1647 (1991).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190(11), 1669–1678 (1999).
  • Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E. A Phase I trial of an HLA-A1 restricted MAGE-3 epitope peptide with incomplete Freund’s adjuvant in patients with resected high-risk melanoma. J. Immunother.22(5), 431–440 (1999).
  • Coulie PG, Karanikas V, Colau D et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc. Natl Acad. USA98(18), 10290–10295 (2001).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61(17), 6451–6458 (2001).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244(4905), 707–712 (1989).
  • Disis ML, Calenoff E, McLaughlin G et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res.54(1), 16–20 (1994).
  • Alexander J, Sidney J, Southwood S et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity1(9), 751–761 (1994).
  • Barve M, Bender J, Senzer N et al. Induction of immune responses and clinical efficacy in a Phase II trial of IDM-2101, a 10-epitope cytotoxic T-lymphocyte vaccine, in metastatic non-small-cell lung cancer. J. Clin. Oncol.26(27), 4418–4425 (2008).
  • Ishioka GY, Disis ML, Morse MA et al. Multi-epitope CTL responses induced by a peptide vaccine (EP-2101) in colon and non-small cell lung cancer patients. J. Immunother.27(6), S23–S24 (2004) (Abstract).
  • Border WA, Ruoslahti E. Transforming growth factor-β in disease: the dark side of tissue repair. J. Clin. Invest.90(1), 1–7 (1992).
  • Jakowlew SB, Mathias A, Chung P, Moody TW. Expression of transforming growth factor β ligand and receptor messenger RNAs in lung cancer cell lines. Cell Growth Differ.6(4), 465–476 (1995).
  • Kasid A, Bell GI, Director EP. Effects of transforming growth factor-β on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells. J. Immunol.141(2), 690–698 (1988).
  • Massague J. The TGF-β family of growth and differentiation factors. Cell49(4), 437–438 (1987).
  • Naganuma H, Sasaki A, Satoh E et al. Transforming growth factor-β inhibits interferon-γ secretion by lymphokine-activated killer cells stimulated with tumor cells. Neurol. Med. Chir. (Tokyo)36(11), 789–795 (1996).
  • Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS. Plasma transforming growth factor-β1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer86(9), 1712–1719 (1999).
  • Nemunaitis J, Dillman RO, Schwarzenberger PO et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol.24(29), 4721–4730 (2006).
  • Marzo AL, Fitzpatrick DR, Robinson BW, Scott B. Antisense oligonucleotides specific for transforming growth factor β2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res.57(15), 3200–3207 (1997).
  • Fakhrai H, Mantil JC, Liu L et al. Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther.13(12), 1052–1060 (2006).
  • Park JA, Wang E, Kurt RA, Schluter SF, Hersh EM, Akporiaye ET. Expression of an antisense transforming growth factor-β1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Ther.4(1), 42–50 (1997).
  • Tzai TS, Shiau AL, Liu LL, Wu CL. Immunization with TGF-β antisense oligonucleotide-modified autologous tumor vaccine enhances the antitumor immunity of MBT-2 tumor-bearing mice through upregulation of MHC class I and Fas expressions. Anticancer Res.20(3A), 1557–1562 (2000).
  • Rook AH, Kehrl JH, Wakefield LM et al. Effects of transforming growth factor β on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol.136(10), 3916–3920 (1986).
  • Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-β. Nature334(6179), 260–262 (1988).
  • Sporn MB, Roberts AB, Wakefield LM, Assoian RK. Transforming growth factor-β: biological function and chemical structure. Science233(4763), 532–534 (1986).
  • Bodmer S, Strommer K, Frei K et al. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J Immunol,143(10), 3222–3229 (1989).
  • Nemunaitis J, Nemunaitis M, Senzer N et al. Phase II trial of Belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther.16(8), 620–624 (2009).
  • Warren TL, Weiner GJ. Uses of granulocyte–macrophage colony-stimulating factor in vaccine development. Curr. Opin. Hematol.7(3), 168–173 (2000).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. USA90(8), 3539–3543 (1993).
  • Salgia R, Lynch T, Skarin A et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol.21(4), 624–630 (2003).
  • Nemunaitis J, Nemunaitis J. Granulocyte–macrophage colony-stimulating factor gene-transfected autologous tumor cell vaccine: focus [correction to fcous] on non-small-cell lung cancer. Clin. Lung Cancer5(3), 148–157 (2003).
  • Nemunaitis J, Jahan T, Ross H et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther.13(6), 555–562 (2006).
  • Antonia SJ, Seigne J, Diaz J et al. Phase I trial of a B7–1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J. Urology167(5), 1995–2000 (2002).
  • Raez LE, Cassileth PA, Schlesselman JJ et al. Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. J. Clin. Oncol.22(14), 2800–2807 (2004).
  • Raez LE, Santos ES, Mudad R, Podack ER. Clinical trials targeting lung cancer with active immunotherapy: the scope of vaccines. Expert Rev. Anticancer Ther.5(4), 635–644 (2005).
  • Deriy L, Ogawa H, Gao GP, Galili U. In vivo targeting of vaccinating tumor cells to antigen-presenting cells by a gene therapy method with adenovirus containing the α1,3galactosyltransferase gene. Cancer Gene Ther.12(6), 528–539 (2005).
  • Morris JC, Vahanian N, Janik JE. Phase I study of an antitumor vaccination using α(1,3)galactosyltransferase expressing allogeneic tumor cells in patients (Pts) with refractory or recurrent non-small cell lung cancer (NSCLC). 2005 ASCO Annual Meeting Proceedings. J. Clin. Oncol.23(16S, Pt 1, Suppl.), 2586 (2005).
  • Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol. Immunother.53(4), 275–306 (2004).
  • Conrad C, Nestle FO. Dendritic cell-based cancer therapy. Curr. Opin. Mol. Ther.5(4), 405–412 (2003).
  • Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer. J. Clin. Oncol.22(14), 2808–2815 (2004).
  • Ueda Y, Itoh T, Nukaya I et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int. J. Oncol.24(4), 909–917 (2004).
  • Morse MA, Clay TM, Hobeika AC et al. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin. Cancer Res.11(8), 3017–3024 (2005).
  • Morse MA, Hobeika AC, Osada T et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood112(3), 610–618 (2008).
  • Hirschowitz EA, Yannelli JR. Immunotherapy for lung cancer. Proc. Am. Thorac. Soc.6(2), 224–232 (2009).
  • Giaccone G, Debruyne C, Felip E et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971–08971B; Silva Study). J. Clin. Oncol.23(28), 6854–6864 (2005).
  • Brezicka T, Bergman B, Olling S, Fredman P. Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer28(1), 29–36 (2000).
  • Vangsted AJ, Clausen H, Kjeldsen TB et al. Immunochemical detection of a small cell lung cancer-associated ganglioside (FucGM1) antigen in serum. Cancer Res.51(11), 2879–2884 (1991).
  • Dickler MN, Ragupathi G, Liu NX et al. Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin. Cancer Res.5(10), 2773–2779 (1999).
  • Krug LM, Ragupathi G, Hood C et al. Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin. Cancer Res.10(18 Pt 1), 6094–6100 (2004).
  • Livingston PO, Hood C, Krug LM et al. Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol. Immunother.54(10), 1018–1025 (2005).
  • Rutishauser U. Polysialic acid and the regulation of cell interactions. Curr. Opin. Cell Biol.8(5), 679–684 (1996).
  • Daniel L, Trouillas J, Renaud W et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar–Furth rats) is related to growth rate and malignancy. Cancer Res.60(1), 80–85 (2000).
  • Krug LM, Ragupathi G, Ng KK et al. Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin. Cancer Res.10(3), 916–923 (2004).
  • Roses RE, Xu M, Koski GK, Czerniecki BJ. Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene27(2), 200–207 (2008).
  • Demaria S, Bhardwaj N, McBride WH, Formenti SC. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys.63(3), 655–666 (2005).
  • Fidler M, Seba A, Farlow E et al. Tumor survivin expression in locally advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemoradiation followed by surgical resection. J. Clin. Oncol.27, S15 (2009).
  • Maples P, Kumar P, Oxendine I et al. TAG vaccine: autologous tumor vaccine genetically modified to express GM-CSF and block production of TGFβ2. BioProcessing J.8(1), 38–45 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.