759
Views
14
CrossRef citations to date
0
Altmetric
Editorial

Adjuvants: no longer a ‘dirty little secret’, but essential key players in vaccines of the future

Pages 1-5 | Published online: 09 Jan 2014

References

  • WHO, UNICEF, World Bank. State of the World’s Vaccines and Immunization (3rd Edition). World Health Organization, Geneva, Switzerland (2009).
  • Plotkin S, Orenstein W, Offit P. Vaccines (5th Edition). Saunders Elsevier, PA, USA (2008).
  • Mosca F, Tritto E, Muzzi A et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA105(30), 10501–10506 (2008).
  • De Gregorio E, Tritto E, Rappuoli R. Alum adjuvanticity: unraveling a century old mystery. Eur. J. Immunol.38(8), 2068–2071 (2008).
  • Harrison LC. The prospect of vaccination to prevent type 1 diabetes. Hum. Vaccin.1(4), 143–150 (2005).
  • Lebens M, Sun JB, Czerkinsky C, Holmgren J. Current status and future prospects for a vaccine against schistosomiasis. Expert Rev. Vaccines3(3), 315–328 (2004).
  • McManus DP. The search for a vaccine against schistosomiasis – a difficult path but an achievable goal. Immunol. Rev.171, 149–161 (1999).
  • McManus DP, Loukas A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev.21(1), 225–242 (2008).
  • Targett GA, Greenwood BM. Malaria vaccines and their potential role in the elimination of malaria. Malar. J.7(Suppl. 1), S10 (2008).
  • Birkett AJ. PATH Malaria Vaccine Initiative (MVI): perspectives on the status of malaria vaccine development. Hum. Vaccin.6(1) (2010).
  • Chattopadhyay R, Conteh S, Li M, James ER, Epstein JE, Hoffman SL. The effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine. Vaccine27(27), 3675–3680 (2009).
  • Hoffman SL, Billingsley PF, James E et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin.6(1), 97–106 (2010).
  • Hansen R, deSilva S, Strickland GT. Antisporozoite antibodies in mice immunized with irradiation-attenuated Plasmodium berghei sporozoites. Trans. R. Soc. Trop. Med. Hyg.73(5), 574–578 (1979).
  • Daar AS, Thorsteinsdottir H, Martin DK, Smith AC, Nast S, Singer PA. Top ten biotechnologies for improving health in developing countries. Nat. Genet.32(2), 229–232 (2002).
  • De Gregorio E, D’Oro U, Wack A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol.21(3), 339–345 (2009).
  • O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov.2(9), 727–735 (2003).
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol.11(5), 373–384 (2010).
  • Holmgren J, Harandi AM, Czerkinsky C. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Expert Rev. Vaccines2(2), 205–217 (2003).
  • Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine11(12), 1179–1184 (1993).
  • Dagan R, Poolman J, Siegrist CA. Glycoconjugate vaccines and immune interference: a review. Vaccine28(34), 5513–5523 (2010).
  • Cummings JF, Spring MD, Schwenk RJ et al. Recombinant liver stage antigen-1 (LSA-1) formulated with AS01 or AS02 is safe, elicits high titer antibody and induces IFN-γ/IL-2 CD4+ T cells but does not protect against experimental Plasmodium falciparum infection. Vaccine28(31), 5135–5144 (2009).
  • Waitumbi JN, Anyona SB, Hunja CW et al. Impact of RTS,S/AS02(A) and RTS,S/AS01(B) on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoS ONE4(11), e7849 (2009).
  • Garcon N, Chomez P, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6(5), 723–739 (2007).
  • Spohn G, Bachmann MF. Exploiting viral properties for the rational design of modern vaccines. Expert Rev. Vaccines7(1), 43–54 (2008).
  • Moorthy VS, Ballou WR. Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data. Malar. J.8(1), 312 (2009).
  • Kubler-Kielb J, Majadly F, Wu Y et al. Long-lasting and transmission-blocking activity of antibodies to Plasmodium falciparum elicited in mice by protein conjugates of Pfs25. Proc. Natl Acad. Sci. USA104(1), 293–298 (2007).
  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J.8(3), E501–E507 (2006).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev.60(8), 915–928 (2008).
  • Arakawa T, Komesu A, Otsuki H et al. Nasal immunization with a malaria transmission-blocking vaccine candidate, Pfs25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum. Infect. Immun.73(11), 7375–7380 (2005).
  • Arakawa T, Tachibana M, Miyata T et al. Malaria ookinete surface protein-based vaccination via the intranasal route completely blocks parasite transmission in both passive and active vaccination regimens in a rodent model of malaria infection. Infect. Immun.77(12), 5496–5500 (2009).
  • Arakawa T, Tsuboi T, Kishimoto A et al. Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine21(23), 3143–3148 (2003).
  • Sun JB, Eriksson K, Li BL, Lindblad M, Azem J, Holmgren J. Vaccination with dendritic cells pulsed in vitro with tumor antigen conjugated to cholera toxin efficiently induces specific tumoricidal CD8+ cytotoxic lymphocytes dependent on cyclic AMP activation of dendritic cells. Clin. Immunol.112(1), 35–44 (2004).
  • Miyata T, Harakuni T, Tsuboi T et al.Plasmodium vivax ookinete surface protein Pvs25 linked to cholera toxin B subunit induces potent transmission-blocking immunity by intranasal as well as subcutaneous immunization. Infect. Immun.78(9), 3773–3782 (2010).
  • Harakuni T, Sugawa H, Komesu A, Tadano M, Arakawa T. Heteropentameric cholera toxin B subunit chimeric molecules genetically fused to a vaccine antigen induce systemic and mucosal immune responses: a potential new strategy to target recombinant vaccine antigens to mucosal immune systems. Infect. Immun.73(9), 5654–5665 (2005).
  • Lycke N, Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. DOI: 10.1038/mi.2010.54 (2010) (Epub ahead of print).
  • Lycke N. The B-cell targeted CTA1-DD vaccine adjuvant is highly effective at enhancing antibody as well as CTL responses. Curr. Opin. Mol. Ther.3(1), 37–44 (2001).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.