138
Views
12
CrossRef citations to date
0
Altmetric
Review

Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: where are we?

, , , &
Pages 957-969 | Published online: 09 Jan 2014

References

  • von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol.11(1), 14–20 (2010).
  • Mackay IR. Clustering and commonalities among autoimmune diseases. J. Autoimmun.33(3–4), 170–177 (2009).
  • Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol.22, 531–562 (2004).
  • Garza KM, Agersborg SS, Baker E, Tung KS. Persistence of physiological self antigen is required for the regulation of self tolerance. J. Immunol.164(8), 3982–3989 (2000).
  • Lernmark A, Falorni A. Immunology of insulin-dependent diabetes mellitus. In: Textbook of Diabetes. Pickup J, Williams G (Eds). Blackwell Science Ltd, Oxford, UK, 15.11–15.23 (1997).
  • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med.329(14), 977–986 (1993).
  • Luo X, Herold KC, Miller SD. Immunotherapy of Type 1 diabetes: where are we and where should we be going? Immunity32(4), 488–499 (2010).
  • Firestein GS. Evolving concepts of rheumatoid arthritis. Nature423(6937), 356–361 (2003).
  • Goronzy JJ, Weyand CM. Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res. Ther.11(5), 249 (2009).
  • Pratt AG, Isaacs JD, Mattey DL. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol.23(1), 37–48 (2009).
  • Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet369(9573), 1627–1640 (2007).
  • Ludvigsson J. Therapy with GAD in diabetes. Diabetes Metab. Res. Rev.25(4), 307–315 (2009).
  • Ludvigsson J, Faresjo M, Hjorth M et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med.359(18), 1909–1920 (2008).
  • Harrison LC. The prospect of vaccination to prevent Type 1 diabetes. Hum. Vaccin.1(4), 143–150 (2005).
  • Wolfraim LA. Treating autoimmune diseases through restoration of antigen-specific immune tolerance. Arch. Immunol. Ther. Exp. (Warsz.)54(1), 1–13 (2006).
  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl Acad. Sci. USA98(20), 11539–11544 (2001).
  • Rigano MM, Sala F, Arntzen CJ, Walmsley AM. Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites. Vaccine1(7–8), 809–811 (2003).
  • Boehm R. Bioproduction of therapeutic proteins in the 21st Century and the role of plants and plant cells as production platforms. Ann. NY Acad. Sci.1102, 121–134 (2007).
  • Chan SJ, Weiss J, Konrad M et al. Biosynthesis and periplasmic segregation of human proinsulin in Escherichia coli. Proc. Natl Acad. Sci. USA78(9), 5401–5405 (1981).
  • Thim L, Hansen MT, Norris K et al. Secretion and processing of insulin precursors in yeast. Proc. Natl Acad. Sci. USA83(18), 6766–6770 (1986).
  • Wang Y, Liang ZH, Zhang YS et al. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnol. Bioeng.73(1), 74–79 (2001).
  • Yanagita M, Nakayama K, Takeuchi T. Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the non-endocrine cell line, COS-7. FEBS Lett.311(1), 55–59 (1992).
  • Nykiforuk CL, Boothe JG, Murray EW et al. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol. J.4(1), 77–85 (2006).
  • Boothe JG, Nykiforuk CL, Kuhlman PA et al. Analytical characterization, safety and clinical bioequivalence of recombinant human insulin from transgenic plants. Presented at: American Diabetes Association’s 69th Scientific Sessions. New Orleans, LA, USA, 5–9 June 2009.
  • Mett V, Shamloul AM, Hirai H, Zhou Z, Notkins A, Yusibov V. Engineering and expression of the intracellular domain of insulinoma-associated tyrosine phosphatase (IA-2ic), a Type 1 diabetes autoantigen, in plants. Transgenic Res.16(1), 77–84 (2007).
  • Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grutter MG. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J.22(16), 4027–4037 (2003).
  • Ma SW, Zhao DL, Yin ZQ et al. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat. Med.3(7), 793–796 (1997).
  • Porceddu A, Falorni A, Ferradini N et al. Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol. Breeding5(6), 553–560 (1999).
  • Avesani L, Falorni A, Tornielli GB et al. Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res.12(2), 203–212 (2003).
  • Avesani L, Vitale A, Pedrazzini E et al. Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Plant Biotechnol. J. DOI: 10.1111/j.1467–7652.2010.00514.x (2010) (Epub ahead of print).
  • Hampe CS, Hammerle LP, Falorni A, Robertson J, Lernmark A. Site-directed mutagenesis of K396R of the 65 kDa glutamic acid decarboxylase active site obliterates enzyme activity but not antibody binding. FEBS Lett.488(3), 185–189 (2001).
  • Wang X, Brandsma M, Tremblay R et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol.8, 87 (2008).
  • Morgan K, Turner SL, Reynolds I, Hajeer AH, Brass A, Worthington J. Identification of an immunodominant B-cell epitope in bovine type II collagen and the production of antibodies to type II collagen by immunization with a synthetic peptide representing this epitope. Immunology77(4), 609–616 (1992).
  • Staines NA, Harper N, Ward FJ, Malmstrom V, Holmdahl R, Bansal S. Mucosal tolerance and suppression of collagen-induced arthritis (CIA) induced by nasal inhalation of synthetic peptide 184–198 of bovine type II collagen (CII) expressing a dominant T cell epitope. Clin. Exp. Immunol.103(3), 368–375 (1996).
  • Myers LK, Seyer JM, Stuart JM, Terato K, David CS, Kang AH. T cell epitopes of type II collagen that regulate murine collagen-induced arthritis. J. Immunol.151(1), 500–505 (1993).
  • Krco CJ, Pawelski J, Harders J et al. Characterization of the antigenic structure of human type II collagen. J. Immunol.156(8), 2761–2768 (1996).
  • Khare SD, Krco CJ, Griffiths MM, Luthra HS, David CS. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J. Immunol.155(7), 3653–3659 (1995).
  • Zhu P, Li XY, Wang HK et al. Oral administration of type-II collagen peptide 250–270 suppresses specific cellular and humoral immune response in collagen-induced arthritis. Clin. Immunol.122(1), 75–84 (2007).
  • Hashizume F, Hino S, Kakehashi M et al. Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res.17(6), 1117–1129 (2008).
  • Sarker S, Ogawa M, Takahashi M, Asasda K. The processing of a 57-kDa precursor peptide to subunits of rice glutelin. Plant Cell Physiol.27, 1579–1586 (1986).
  • Moder KG, Nabozny GH, Luthra HS, David CS. Immunogenetics of collagen induced arthritis in mice: a model for human polyarthritis. Reg. Immunol.4(5), 305–313 (1992).
  • Suzuki M, Uetsuka K, Suzuki M, Shinozuka J, Nakayama H, Doi K. Immunohistochemical study on type II collagen-induced arthritis in DBA/1J mice. Exp. Anim.46(4), 259–267 (1997).
  • Myers LK, Brand DD, Ye XJ et al. Characterization of recombinant type II collagen: arthritogenicity and tolerogenicity in DBA/1 mice. Immunology95(4), 631–639 (1998).
  • Holmdahl R, Andersson EC, Andersen CB, Svejgaard A, Fugger L. Transgenic mouse models of rheumatoid arthritis. Immunol. Rev.169, 161–173 (1999).
  • Garcia G, Komagata Y, Slavin AJ, Maron R, Weiner HL. Suppression of collagen-induced arthritis by oral or nasal administration of type II collagen. J. Autoimmun.13(3), 315–324 (1999).
  • Folk JE, Finlayson JS. The epsilon-(g-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv. Protein Chem.31, 1–133 (1977).
  • Dieterich W, Ehnis T, Bauer M et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med.3(7), 797–801 (1997).
  • Sblattero D, Berti I, Trevisiol C et al. Human recombinant tissue transglutaminase ELISA: an innovative diagnostic assay for celiac disease. Am. J. Gastroenterol.95(5), 1253–1257 (2000).
  • Osman AA, Richter T, Stern M et al. Production of recombinant human tissue transglutaminase using the baculovirus expression system, and its application for serological diagnosis of coeliac disease. Eur. J. Gastroenterol. Hepatol.14(11), 1217–1223 (2002).
  • Blackwell PJ, Hill PG, Holmes GK. Autoantibodies to human tissue transglutaminase: superior predictors of coeliac disease. Scand. J. Gastroenterol.37(11), 1282–1285 (2002).
  • Shi Q, Kim SY, Blass JP, Cooper AJ. Expression in Escherichia coli and purification of hexahistidine-tagged human tissue transglutaminase. Protein Expr. Purif.24(3), 366–373 (2002).
  • Sorrentino A, Schillberg S, Fischer R, Rao R, Porta R, Mariniello L. Recombinant human tissue transglutaminase produced into tobacco suspension cell cultures is active and recognizes autoantibodies in the serum of coeliac patients. Int. J. Biochem. Cell Biol.37(4), 842–851 (2005).
  • Sorrentino A, Schillberg S, Fischer R, Porta R, Mariniello L. Molecular farming of human tissue transglutaminase in tobacco plants. Amino Acids36(4), 765–772 (2009).
  • Sun JB, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl Acad. Sci. USA93(14), 7196–7201 (1996).
  • Holmgren J, Adamsson J, Anjuere F et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett.97(2), 181–188 (2005).
  • Sun JB, Czerkinsky C, Holmgren J. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand. J. Immunol.71(1), 1–11 (2010).
  • Frey A, Giannasca KT, Weltzin R et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med.184(3), 1045–1059 (1996).
  • Carter JE 3rd, Odumosu O, Langridge WH. Expression of a ricin toxin B subunit: insulin fusion protein in edible plant tissues. Mol. Biotechnol.44(2), 90–100 (2010).
  • Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat. Biotechnol.16(10), 934–938 (1998).
  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol. J.5(4), 495–510 (2007).
  • Li D, O’Leary J, Huang Y, Huner NP, Jevnikar AM, Ma S. Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. Plant Cell Rep.25(5), 417–424 (2006).
  • Bot A, Smith D, Bot S et al. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol.167(5), 2950–2955 (2001).
  • Ma S, Huang Y, Yin Z, Menassa R, Brandle JE, Jevnikar AM. Induction of oral tolerance to prevent diabetes with transgenic plants requires glutamic acid decarboxylase (GAD) and IL-4. Proc. Natl Acad. Sci. USA101(15), 5680–5685 (2004).
  • Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell57(3), 503–512 (1989).
  • Okabe M, Kuni-eda Y, Sugiwura T et al. Inhibitory effect of interleukin-4 on the in vitro growth of Ph1-positive acute lymphoblastic leukemia cells. Blood78(6), 1574–1580 (1991).
  • Ghoreschi K, Thomas P, Breit S et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat. Med.9(1), 40–46 (2003).
  • Rapoport MJ, Jaramillo A, Zipris D et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J. Exp. Med.178(1), 87–99 (1993).
  • van Kimmenade A, Bond MW, Schumacher JH, Laquoi C, Kastelein RA. Expression, renaturation and purification of recombinant human interleukin 4 from Escherichia coli. Eur. J. Biochem.173(1), 109–114 (1988).
  • Solari R, Quint D, Obray H et al. Purification and characterization of recombinant human interleukin 4. Biological activities, receptor binding and the generation of monoclonal antibodies. Biochem. J.262(3), 897–908 (1989).
  • Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif.13(1), 45–52 (1998).
  • Ma S, Huang Y, Davis A et al. Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotechnol. J.3(3), 309–318 (2005).
  • Wogensen L, Lee MS, Sarvetnick N. Production of interleukin 10 by islet cells accelerates immune-mediated destruction of b cells in nonobese diabetic mice. J. Exp. Med.179(4), 1379–1384 (1994).
  • Walsh SR, Shear NH. Psoriasis and the new biologic agents: interrupting a T-AP dance. CMAJ170(13), 1933–1941 (2004).
  • Menassa R, Nguyen V, Jevnikar A, Brandle J. A self-contained system for the field production of plant recombinant interleukin-10. Mol. Breeding8, 177–185 (2001).
  • Menassa R, Kennette W, Nguyen V, Rymerson R, Jevnikar A, Brandle J. Subcellular targeting of human interleukin-10 in plants. J. Biotechnol.108(2), 179–183 (2004).
  • Menassa R, Du C, Yin ZQ et al. Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol. J.5(1), 50–59 (2007).
  • Scheinin T, Butler DM, Salway F, Scallon B, Feldmann M. Validation of the interleukin-10 knockout mouse model of colitis: antitumour necrosis factor-antibodies suppress the progression of colitis. Clin. Exp. Immunol.133(1), 38–43 (2003).
  • Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science289(5483), 1352–1355 (2000).
  • Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J. Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res.16(2), 239–249 (2007).
  • Wakkach A, Cottrez F, Groux H. Can interleukin-10 be used as a true immunoregulatory cytokine? Eur. Cytokine Netw.11(2), 153–160 (2000).
  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001).
  • Bortesi L, Rossato M, Schuster F et al. Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnol.9, 22 (2009).
  • Zaccone P, Phillips J, Conget I et al. Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes48(8), 1522–1528 (1999).
  • Kawakami K, Kawakami M, Puri RK. Specifically targeted killing of interleukin-13 (IL-13) receptor-expressing breast cancer by IL-13 fusion cytotoxin in animal model of human disease. Mol. Cancer Ther.3(2), 137–147 (2004).
  • Shimamura T, Husain SR, Puri RK. The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg. Focus20(4), E11 (2006).
  • Wang DJ, Brandsma M, Yin Z, Wang A, Jevnikar AM, Ma S. A novel platform for biologically active recombinant human interleukin-13 production. Plant Biotechnol. J.6(5), 504–515 (2008).
  • Sharma A, Sharma M. Plants as bioreactors: recent developments and emerging opportunities. Biotechnol. Adv.27, 811–832 (2009).
  • Gleba Y, Klimyuk V, Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine23(17–18), 2042–2048 (2005).
  • Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J.7(7), 682–693 (2009).
  • Modelska A, Dietzschold B, Sleysh N et al. Immunization against rabies with plant-derived antigen. Proc. Natl Acad. Sci. USA95(5), 2481–2485 (1998).
  • Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol. J.8(5), 620–637 (2010).
  • Scheller J, Leps M, Conrad U. Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol. J.4(2), 243–249 (2006).
  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R. Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol.152(2), 622–633 (2010).
  • de Virgilio M, De Marchis F, Bellucci M et al. The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin. J. Exp. Bot.59(10), 2815–2829 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.