200
Views
56
CrossRef citations to date
0
Altmetric
Review

Plant-derived vaccines and other therapeutics produced in contained systems

, &
Pages 877-892 | Published online: 09 Jan 2014

References

  • Ulmer JB, Valley U, Rappuoli R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol.24, 1377–1383 (2006).
  • Basaran P, Rodriguez-Cerezo E. Plant molecular farming: opportunities and challenges. Crit. Rev. Biotechnol.28(3), 153–172 (2008).
  • Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol. Adv.27(6), 879–894 (2009).
  • Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv.27, 449–467 (2009).
  • Kaiser J. Is the drought over for pharming?. Science320, 473–475 (2008).
  • Thorpe TA. History of plant tissue culture. Mol. Biotechnol.37(2), 169–180 (2007).
  • Weathers PJ, Towler MJ, Xu J. Bench to batch: advances in plant cell culture for producing useful products. Appl. Microbiol. Biotechnol.85(5), 1339–1351 (2010).
  • Huang TK, McDonald KA. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J.45, 168–184 (2009).
  • Srivastava S, Srivastava AK. Hairy root culture for mass production of high-value secondary metabolites. Crit. Rev. Biotechnol.27, 29–43 (2007).
  • Weathers P, Liu C, Towler M, Wyslouzil B. Mist reactors: principles, comparison of various systems, and case studies. Electr. J. Integr. Biosci.3, 29–37 (2008).
  • Eibl R, Eibl D. Design of bioreactors suitable for plant cell and tissue cultures. Phytochem. Rev.7, 593–598 (2008).
  • Ducos JP, Terrier B, Courtois D, Pétiard V. Improvement of plastic-based disposable bioreactors for science needs. Phytochem. Rev.7, 607–613 (2008).
  • Kassanis B, Tinsley TW, Quak F. The inoculation of tobacco callus tissue with tobacco mosaic virus. Ann. Appl. Biol.46, 11–19 (1958).
  • Shadwick FS, Doran PM. Propagation of plant viruses in hairy root cultures: a potential method for in vitro production of epitope vaccines and foreign proteins. Biotechnol. Bioengineer.96(3), 570–583 (2007).
  • Shadwick FS, Doran PM. Infection, propagation, distribution and stability of plant virus in hairy root cultures. J. Biotechnol.131, 318–329 (2007).
  • Skarjinskaia M, Karl J, Araujo A et al. Production of recombinant proteins in clonal root cultures using episomal expression vectors. Biotechnol. Bioeng.100(4), 814–819 (2008).
  • Van Etten J. Lesser known large dsDNA viruses. Curr. Top. Microbiol. Immunol.328, 5–7 (2009).
  • Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol.22(11), 1415–1422 (2004).
  • Hiatt A, Cafferkey R, Bowdis K. Production of antibodies in transgenic plants. Nature342, 76–77 (1989).
  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A. Production of correctly processed human serum albumin in transgenic plants. Biotechnology8, 217–221 (1990).
  • Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin. Emerg. Drugs10(1), 185–218 (2005).
  • O’Neill KM, Larsen JS, Curtis WR. Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture. Biotechnol. Prog.24, 372–376 (2008).
  • Shin YJ, Hong SY, Kwon TH, Jang YS, Yang MS. High level of expression of recombinant human granulocyte–macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng.82, 778–783 (2003).
  • Dohi K, Nishikiori M, Tamai A, Ishikawa M, Meshi T, Mori M. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells. Arch. Virol.151(6), 1075–1084 (2006).
  • Huang TK, Plesha MA, Falk BW, Dandekar AM, McDonald KA. Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnol. Bioeng.102, 508–520 (2009).
  • Huang TK, Plesha MA, McDonald KA. Semicontinuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnol. Bioeng.106(3), 408–421 (2010).
  • Xu JF, Tan L, Goodrum KJ, Kieliszewski MJ. High-yields and extended serum half-life of human interferon α 2b expressed in tobacco cells as Arabinogalactan–protein fusions. Biotechnol. Bioeng.97, 997–1008 (2007).
  • Xu JF, Tan L, Lamport DTA, Showalter AM, Kieliszewski MJ. The O-hyp glycosylation code in tobacco and Arabidopsis and a proposed role of hyp-glycans in secretion. Phytochem.69(8), 1631–1640 (2008).
  • Bardor M, Faveeuw C, Fitchette AC et al. Immunoreactivity in mammals of two typical plant glyco-epitopes (1,3)-fucose and core xylose. Glycobiology13, 427–434 (2003).
  • Gomord V, Fitchette AC, Menu-Bouaouiche L et al. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol. J.8(5), 564–587 (2010).
  • Karg SR, Frey AD, Kallio PT. Reduction of N-linked xylose and fucose by expression of rat 1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J. Biotechnol.146(1–2), 54–65 (2010).
  • Condaminet B, Peguet-Navarro J, Stahl PD, Dalbiez-Gauthier C, Schmitt D, Berthier-Vergnes O. Human epidermal Langerhans cells express the mannose-fucose binding receptor. Eur. J. Immunol.28, 3541–3551 (1998).
  • Shaaltiel Y, Bartfeld D, Hashmueli S et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J.5(5), 579–590 (2007).
  • Aviezer D, Brill-Almon E, Shaaltiel Y et al. A plant-derived recombinant human glucocerebrosidase enzyme – a preclinical and Phase I investigation. PLoS One4(3), 4792– (2009).
  • Doran PM. Loss of secreted antibody from transgenic plant tissue cultures due to surface adsorption. J. Biotechnol.122, 39–54 (2006).
  • Shih SM-H, Doran PM. Foreign protein production using plant cell and organ cultures: advantages and limitations. Biotechnol. Adv.27, 1036–1042 (2009).
  • Sharp JM, Doran PM. Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol. Prog.17, 979–992 (2001).
  • Sharp JM, Doran PM. Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol. Bioengineer.73(5), 338–346 (2001).
  • Girard LS, Fabis MJ, Bastin M, Courtois D, Petiard V, Koprowski H. Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. Biochem. Biophys. Res. Commun.345, 602–607 (2006).
  • Kwon TH, Seo JE, Kim J, Lee JH, Jang YS, Yang MS. Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol. Bioeng.81, 870–875 (2003).
  • Francisco JA, Gawlak SL, Miller M et al. Expression and characterization of Bryodin 1 and a Bryodin 1-based single chain immunotoxin from tobacco cell culture. Bioconjugate Chem.8, 708–713 (1997).
  • Chung IS, Kim CH, Kim KI et al. Production of recombinant rotavirus VP6 from a suspension culture of transgenic tomato (Lycopersicon esculentum Mill.) cells. Biotechnol. Lett.22(4), 251–255 (2000).
  • Smith ML, Mason HS, Shuler ML. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng.80, 812–822 (2002).
  • Sojikul P, Buehner N, Mason HS. A plant signal peptide hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells. Proc. Natl Acad. Sci. USA100, 2209–2214 (2003).
  • Kumar GBS, Ganapathi TR, Srinivas L, Revathi CJ, Bapat VA. Secretion of hepatitis B surface antigen in transformed tobacco cell suspension cultures. Biotechnol. Lett.27, 927–932 (2005).
  • Lienard D, Tran Dinh O, van Oort E et al. Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Biotechnol. J.5(1), 93–108 (2007).
  • Guillon S, Guiller JT, Pati PK, Rideau M, Gantet P. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol.24, 403–409 (2006).
  • Hu Z-B, Du M. Hairy root and its application in plant genetic engineering. J. Integrative Plant Biol.48(2), 121–127 (2006).
  • Sivakumar G. Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol. J.1, 1419–1427 (2006).
  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I. Production of recombinant proteins in plant root exudates. Nat. Biotechnol.17, 466–469 (1999).
  • Pizzuti F, Daroda L. Investigating recombinant protein exudation from roots of transgenic tabacco. Environ. Biosafety Res.7, 1–8 (2008).
  • Martinez C, Petruccelli S, Giulietti AM, Alvarez MA. Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Elec. J. Biotechnol.8(2), 170–176 (2005).
  • Medina-Bolivar F, Wright R, Funka V et al. A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine21, 997–1005 (2003).
  • Liu C, Towler MJ, Mediano G, Cramer CL, Weathers PJ. Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol. Bioengineer.102(4), 1074–1086 (2009).
  • Sunil Kumar GB, Ganapathi TR, Srinivas L, Revathi CJ, Bapat VA. Expression of hepatitis B surface antigen in potato hairy roots. Plant Sci.170, 918–925 (2006).
  • Rukavtsova EB, Abramikhina TV, Shulga NY, Bykov VA, Bur’yanov YI. Tissue specific expression of hepatitis B virus surface antigen in transgenic plant cells and tissue culture. Russian J. Plant Physiol.54(6), 770–775 (2007).
  • Ko S, Liu J-R, Yamakawa T, Matsumoto Y. Expression of the protective antigen (SpaA) in transgenic hairy roots of tobacco. Plant Mol. Biol. Report24, 251–251 (2006).
  • Ma JKC, Lehner T, Stabila P, Fux CI, Hiatt A. Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur. J. Immunol.24, 131–138 (1994).
  • Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol.18, 134–141 (2007).
  • Collens JI, Mason HS, Curtis WR. Agrobacterium mediated viral vector-amplified transient gene expression in Nicotiana glutinosa plant tissue culture. Biotechnol. Prog.23(3), 570–576 (2007).
  • Massa S, Franconi R, Brandi R et al. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine25(16), 3018–3021 (2007).
  • Venuti A, Massa S, Mett V et al. An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine27(25–26), 3395–3397 (2009).
  • Massa S, Skarjinskaia M, Mett V, Venuti A, Yusibov V, Franconi R. Plant platforms for producing anti-cancer therapeutic vaccines. Presented at: Plant-Based Vaccines & Antibodies Plant Expression Systems for Recombinant Pharmacologics PBVA. Verona, Italy, 15–17 June 2009 (Poster A109).
  • Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep.24, 629–641 (2005).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Biofuels from eukaryotic microalgae. Eukaryot. Cell DOI:10.1128/EC.00364-09 (2010) (Epub ahead of print).
  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R. Phycoremediation of heavy metals using transgenic microalgae. Adv. Exp. Med. Biol.616, 99–109 (2007).
  • Barzegari A, Hejazi MA, Hosseinzadeh N, Eslami S, Aghdam EM, Hejazi MS. Dunaliella as an attractive candidate for molecular farming. Mol. Biol. Rep. DOI: 10.1007/s11033-009-9933-4 (2009) (Epub ahead of print).
  • Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii. Mol. Biotechnol.34, 213–223 (2006).
  • Franklin SE, Mayfield SP. Prospects for molecular farming in the green alga Chlamydomonas. Curr. Opin. Plant Biol.7, 159–165 (2004).
  • Mayfield SP, Manuell AL, Chen S et al.Chlamydomonas reinhardtii chloroplasts as protein factories. Curr. Opin. Biotechnol.18, 126–133 (2007).
  • Harris EH. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol.52, 363–406 (2001).
  • Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem.401(2), 3627–3652 (2005).
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Engineer. Life Sci.9(3), 165–177 (2009).
  • Eriksen NT. The technology of microalgal culturing. Biotechnol. Lett.30, 1525–1536 (2008).
  • Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog.22, 1490–1506 (2006).
  • Beckmann J. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J. Biotechnol.142(1), 70–77 (2009).
  • Mussgnug JH, Thomas-Hall S, Rupprecht J et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J.5, 802–814 (2007).
  • Grossman AR. In the grip of algal genomics. Adv. Exp. Med. Biol.616, 54–76 (2007).
  • Merchant SS, Prochnik SE, Vallon O et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science318, 245–251 (2007).
  • Boynton JE, Gillham NW, Harris EH et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science240, 1534–1538 (1988).
  • Kindle KL, Richards KL, Stern DB. Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA88, 1721–1725 (1991).
  • Surzycki R, Greenham K, Kitayama K et al. Factors effecting expression of vaccines in microalgae. Biologicals37, 133–138 (2009).
  • Fletcher SP, Muto M, Mayfield SP. Optimization of recombinant protein expression in the chloroplasts of green algae. Adv. Exp. Med. Biol.616, 90–98 (2007).
  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C. Influence of codon bias on the expression of foreign genes in microalgae. Adv. Exp. Med. Biol.616, 46–53 (2007).
  • Neupert J, Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J.57, 1140–1150 (2009).
  • Leon R, Fernandez E. Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv. Exp. Med. Biol.616, 1–11 (2007).
  • Mayfield SP, Franklin SE. Expression of human antibodies in eukaryotic micro-algae. Vaccine23, 1828–1832 (2005).
  • Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc. Natl Acad. Sci. USA100(2), 438–442 (2003).
  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol. Bioengineer.104(4), 633–673 (2009).
  • Dreesen IAJ, Hamri GCE, Fusseneggera M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol.145, 273–280 (2010).
  • Sun M, Qian K, Su N, Chang H, Liu J, Chen G. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol. Lett.25, 1087–1092 (2003).
  • Wang X, Brandsma M, Tremblay R et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol.8, 87 (2008).
  • Manuell AL, Beligni MV, Elder JH et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol. J.5, 402–412 (2007).
  • Rival S, Wisniewski JP, Langlais A et al.Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res.17(4), 503–513 (2008).
  • Vunsh R, Li J, Hanania U et al. High expression of transgene protein in Spirodela. Plant Cell Rep.26(9), 1511–1519 (2007).
  • Stomp AM. The duckweeds: a valuable plant for biomanufacturing. Biotechnol. Annu Rev.11, 69–99 (2005).
  • Popov SV, Golovchenko VV, Ovodova RG et al. Characterisation of the oral adjuvant effect of lemnan, a pectic polysaccharide of Lemna minor L. Vaccine24(26), 5413–5419 (2006).
  • Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y, Stomp AM. Genetic transformation of duckweed Lemna Gibba and Lemna Minor. In VitroCell. Dev. Biol. Plant37, 349–353 (2001).
  • Boehm R. Bioproduction of therapeutic proteins in the 21st Century and the role of plants and plant cells as production platforms. Ann. NY Acad. Sci.1102, 121–134 (2007).
  • Cox KM, Sterling JD, Regan JT et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol.24(12), 1591–1597 (2006).
  • Liénard D, Nogué F. Physcomitrella patens: a non-vascular plant for recombinant protein production. Methods Mol. Biol.483, 135–144 (2009).
  • Decker EL, Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactor. Bioprocess Biosystems Engineer.31, 3–9 (2008).
  • Decker EL, Reski R. Moss bioreactors producing improved biopharmaceuticals. Curr. Opin. Biotechnol.18, 393–398 (2007).
  • Decker EL, Reski R. The moss bioreactor. Curr. Opin. Plant Biol.7, 166–170 (2004).
  • Rensing SA, Lang D, Zimmer AD et al. The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science319, 64–69 (2008).
  • Rensing SA, Fritzowsky D, Lang D, Reski R. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genom.6, 43 (2005).
  • Kamisugi,Y, Cuming AC, Cove DJ. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res.33, 173 (2005).
  • Britt AB, May GD. Re-engineering plant gene targeting. Trends Plant Sci.8, 90–95 (2003).
  • Koprivova A, Stemmer C, Altmann F et al. Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotech. J.2, 517–523 (2004).
  • Paccalet T, Bardor M, Rihouey C et al. Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Plant Biotechnol. J.5, 16–25 (2007).
  • Huether CM, Lienhart O, Baur A et al. Glyco-engineering of moss lacking plant-specific sugar residues. Plant Biol.7, 292–299 (2005).
  • Schuster M, Jost W, Mudde GC et al.In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol. J.2, 700–708 (2007).
  • Nechansky A, Schuster M, Jost W et al. Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glycol engineering of therapeutic antibodies. Mol. Immunol.44, 1826–1828 (2007).
  • Vermij P, Waltz E. USDA approves the first plant-based vaccine. Nat. Biotechnol.24, 233–224 (2006).
  • Pujol M, Ramírez NI, Ayala M et al. An integral approach towards a practical application for a plant-made monoclonal antibody in vaccine purification. Vaccine23, 1833–1837 (2005).
  • WHO. 6th WHO meeting on evaluation of pandemic influenza vaccines in clinical trials. Geneva, Switzerland, 18–19 February 2010.
  • Rybicki EP. Plant-produced vaccines: promise and reality. Drug Discov. Today14(1–2), 16–24 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.