393
Views
39
CrossRef citations to date
0
Altmetric
Review

Recent progress towards development of a Shigella vaccine

, &
Pages 43-55 | Published online: 09 Jan 2014

References

  • UNICEF/WHO. Diarrhea: why children are still dying and what can be done (2009).
  • Ahs W, Tao W, Löfgren J, Forsberg BC. Diarrheal diseases in low- and middle-income countries: incidence, prevention and management. Open Infect. Dis. J. 4, 113–124 (2010).
  • Lorntz B, Soares AM, Moore SR et al. Early childhood diarrhea predicts impaired school performance. Pediatr. Infect. Dis. J. 25(6), 513–520 (2006).
  • Moore SR, Lima AA, Conaway MR, Schorling JB, Soares AM, Guerrant RL. Early childhood diarrhoea and helminthiases associate with long-term linear growth faltering. Int. J. Epidemiol. 30(6), 1457–1464 (2001).
  • Kotloff KL, Winickoff JP, Ivanoff B et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77(8), 651–666 (1999).
  • Bardhan P, Faruque AS, Naheed A, Sack DA. Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerging Infect. Dis. 16(11), 1718–1723 (2010).
  • Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat. Rev. Microbiol. 5(7), 540–553 (2007).
  • Ashkenazi S, Levy I, Kazaronovski V, Samra Z. Growing antimicrobial resistance of Shigella isolates. J. Antimicrob. Chemother. 51(2), 427–429 (2003).
  • DuPont HL, Levine MM, Hornick RB, Formal SB. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159(6), 1126–1128 (1989).
  • Levine MM, DuPont HL, Formal SB et al. Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J. Infect. Dis. 127(3), 261–270 (1973).
  • Niyogi SK. Shigellosis. J. Microbiol. 43(2), 133–143 (2005).
  • Greco KM, McDonough MA, Butterton JR. Variation in the Shiga toxin region of 20th-century epidemic and endemic Shigella dysenteriae 1 strains. J. Infect. Dis. 190(2), 330–334 (2004).
  • von Seidlein L, Kim DR, Ali M et al. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3(9), e353 (2006).
  • Niyogi SK. Increasing antimicrobial resistance–an emerging problem in the treatment of shigellosis. Clin. Microbiol. Infect. 13(12), 1141–1143 (2007).
  • Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin. Microbiol. Rev. 21(1), 134–156 (2008).
  • Sansonetti PJ. Shigellosis: an old disease in new clothes? PLoS Med. 3(9), e354 (2006).
  • Sansonetti PJ. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4(12), 953–964 (2004).
  • Sansonetti PJ. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 4(1), 8–14 (2011).
  • Phalipon A, Sansonetti PJ. Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol. Cell Biol. 85(2), 119–129 (2007).
  • Sansonetti PJ. The bacterial weaponry: lessons from Shigella. Ann. N. Y. Acad. Sci. 1072, 307–312 (2006).
  • Van Gijsegem F, Genin S, Boucher C. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1(5), 175–180 (1993).
  • Formal SB, Oaks EV, Olsen RE, Wingfield-Eggleston M, Snoy PJ, Cogan JP. Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J. Infect. Dis. 164(3), 533–537 (1991).
  • Robbins JB, Chu C, Schneerson R. Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin. Infect. Dis. 15(2), 346–361 (1992).
  • Noriega FR, Liao FM, Maneval DR, Ren S, Formal SB, Levine MM. Strategy for cross-protection among Shigella flexneri serotypes. Infect. Immun. 67(2), 782–788 (1999).
  • Kotloff KL, Nataro JP, Losonsky GA et al. A modified Shigella volunteer challenge model in which the inoculum is administered with bicarbonate buffer: clinical experience and implications for Shigella infectivity. Vaccine 13(16), 1488–1494 (1995).
  • Cohen D, Green MS, Block C, Slepon R, Lerman Y. Natural immunity to shigellosis in two groups with different previous risks of exposure to Shigella is only partly expressed by serum antibodies to lipopolysaccharide. J. Infect. Dis. 165(4), 785–787 (1992).
  • Cohen D, Green MS, Block C, Slepon R, Ofek I. Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J. Clin. Microbiol. 29(2), 386–389 (1991).
  • Oberhelman RA, Kopecko DJ, Salazar-Lindo E et al. Prospective study of systemic and mucosal immune responses in dysenteric patients to specific Shigella invasion plasmid antigens and lipopolysaccharides. Infect. Immun. 59(7), 2341–2350 (1991).
  • Islam D, Wretlind B, Ryd M, Lindberg AA, Christensson B. Immunoglobulin subclass distribution and dynamics of Shigella-specific antibody responses in serum and stool samples in shigellosis. Infect. Immun. 63(5), 2054–2061 (1995).
  • Orr N, Robin G, Lowell G, Cohen D. Presence of specific immunoglobulin A-secreting cells in peripheral blood after natural infection with Shigella sonnei. J. Clin. Microbiol. 30(8), 2165–2168 (1992).
  • Li A, Rong ZC, Ekwall E, Forsum U, Lindberg AA. Serum antibody responses against Shigella lipopolysaccharides and invasion plasmid-coded antigens in Shigella infected Swedish patients. Scand. J. Infect. Dis. 25(5), 569–577 (1993).
  • Orr N, Robin G, Cohen D, Arnon R, Lowell GH. Immunogenicity and efficacy of oral or intranasal Shigella flexneri 2a and Shigella sonnei proteosome-lipopolysaccharide vaccines in animal models. Infect. Immun. 61(6), 2390–2395 (1993).
  • Al-Hasani K, Navarro-Garcia F, Huerta J, Sakellaris H, Adler B. The immunogenic SigA enterotoxin of Shigella flexneri 2a binds to HEp-2 cells and induces fodrin redistribution in intoxicated epithelial cells. PLoS ONE 4(12), e8223 (2009).
  • Oaks EV, Hale TL, Formal SB. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect. Immun. 53(1), 57–63 (1986).
  • Van de Verg LL, Herrington DA, Boslego J, Lindberg AA, Levine MM. Age-specific prevalence of serum antibodies to the invasion plasmid and lipopolysaccharide antigens of Shigella species in Chilean and North American populations. J. Infect. Dis. 166(1), 158–161 (1992).
  • Mukhopadhaya A, Mahalanabis D, Chakrabarti MK. Role of Shigella flexneri 2a 34 kDa outer membrane protein in induction of protective immune response. Vaccine 24(33–34), 6028–6036 (2006).
  • Kaminski RW, Oaks EV. Inactivated and subunit vaccines to prevent shigellosis. Expert Rev. Vaccines 8(12), 1693–1704 (2009).
  • Biswas A, Banerjee P, Mukherjee G, Biswas T. Porin of Shigella dysenteriae activates mouse peritoneal macrophage through Toll-like receptors 2 and 6 to induce polarized type I response. Mol. Immunol. 44(5), 812–820 (2007).
  • Bagchi AK, Sinha AK. Role of 57 kDa major antigenic component of Shigella dysenteriae outer membrane proteins in induction of major histocompatibility complex II-restricted T-cell response. Arch. Med. Res. 35(5), 427–434 (2004).
  • Pore D, Mahata N, Pal A, Chakrabarti MK. Outer membrane protein A (OmpA) of Shigella flexneri 2a, induces protective immune response in a mouse model. PLoS ONE 6(7), e22663 (2011).
  • Fasano A, Noriega FR, Maneval DR Jr et al. Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J. Clin. Invest. 95(6), 2853–2861 (1995).
  • Wu T, Grassel C, Levine MM, Barry EM. Live attenuated Shigella dysenteriae type 1 vaccine strains overexpressing shiga toxin B subunit. Infect. Immun. 79(12), 4912–4922 (2011).
  • Venkatesan MM, Hartman AB, Newland JW et al. Construction, characterization, and animal testing of WRSd1, a Shigella dysenteriae 1 vaccine. Infect. Immun. 70(6), 2950–2958 (2002).
  • Launay O, Sadorge C, Jolly N et al. Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: results of a Phase 2, randomized, double-blind placebo-controlled trial. Vaccine 27(8), 1184–1191 (2009).
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6(2), 148–158 (2006).
  • Levine MM. Immunization against bacterial diseases of the intestine. J. Pediatr. Gastroenterol. Nutr. 31(4), 336–355 (2000).
  • Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Annu. Rev. Microbiol. 51, 311–340 (1997).
  • Levine MM. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol. 8, 129 (2010).
  • Sutter RW, Maher C. Mass vaccination campaigns for polio eradication: an essential strategy for success. Curr. Top. Microbiol. Immunol. 304, 195–220 (2006).
  • Andrianarivelo MR, Boisier P, Rabarijaona L, Ratsitorahina M, Migliani R, Zeller H. Mass vaccination campaigns to eradicate poliomyelitis in Madagascar: oral poliovirus vaccine increased immunity of children who missed routine programme. Trop. Med. Int. Health 6(12), 1032–1039 (2001).
  • Mitragotri S. Immunization without needles. Nat. Rev. Immunol. 5(12), 905–916 (2005).
  • Kersten G, Hirschberg H. Needle-free vaccine delivery. Expert Opin. Drug Deliv. 4(5), 459–474 (2007).
  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S. New insights in mucosal vaccine development. Vaccine 30(2), 142–154 (2012).
  • Clemens J. Evaluation of vaccines against enteric infections: a clinical and public health research agenda for developing countries. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1579), 2799–2805 (2011).
  • Patriarca PA, Wright PF, John TJ. Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review. Rev. Infect. Dis. 13(5), 926–939 (1991).
  • Hallander HO, Paniagua M, Espinoza F et al. Calibrated serological techniques demonstrate significant different serum response rates to an oral killed cholera vaccine between Swedish and Nicaraguan children. Vaccine 21(1–2), 138–145 (2002).
  • Future needs and directions for Shigella vaccines. Wkly Epidemiol. Rec. 81(6), 51–58 (2006).
  • Serazin AC, Shackelton LA, Wilson C, Bhan MK. Improving the performance of enteric vaccines in the developing world. Nat. Immunol. 11(9), 769–773 (2010).
  • Baqui AH, Black RE, El Arifeen S et al. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomised trial. BMJ 325(7372), 1059 (2002).
  • Albert MJ, Qadri F, Wahed MA et al. Supplementation with zinc, but not vitamin A, improves seroconversion to vibriocidal antibody in children given an oral cholera vaccine. J. Infect. Dis. 187(6), 909–913 (2003).
  • Santosham M, Chandran A, Fitzwater S, Fischer-Walker C, Baqui AH, Black R. Progress and barriers for the control of diarrhoeal disease. Lancet 376(9734), 63–67 (2010).
  • Ahmed T, Svennerholm AM, Al Tarique A, Sultana GN, Qadri F. Enhanced immunogenicity of an oral inactivated cholera vaccine in infants in Bangladesh obtained by zinc supplementation and by temporary withholding breast-feeding. Vaccine 27(9), 1433–1439 (2009).
  • Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J. 13(3), 438–444 (2011).
  • Venkatesan MM, Ranallo RT. Live-attenuated Shigella vaccines. Expert Rev. Vaccines 5(5), 669–686 (2006).
  • Kweon MN. Shigellosis: the current status of vaccine development. Curr. Opin. Infect. Dis. 21(3), 313–318 (2008).
  • Phalipon A, Sansonetti PJ. Shigellosis: innate mechanisms of inflammatory destruction of the intestinal epithelium, adaptive immune response, and vaccine development. Crit. Rev. Immunol. 23(5-6), 371–401 (2003).
  • Goldblatt D. Conjugate vaccines. Clin. Exp. Immunol. 119(1), 1–3 (2000).
  • González-Fernández A, Faro J, Fernández C. Immune responses to polysaccharides: lessons from humans and mice. Vaccine 26(3), 292–300 (2008).
  • Passwell JH, Ashkenazi S, Harlev E et al.; Israel Shigella Study Group. Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one- to four-year-old children. Pediatr. Infect. Dis. J. 22(8), 701–706 (2003).
  • Passwell JH, Harlev E, Ashkenazi S et al. Safety and immunogenicity of improved Shigella O-specific polysaccharide-protein conjugate vaccines in adults in Israel. Infect. Immun. 69(3), 1351–1357 (2001).
  • Passwell JH, Ashkenzi S, Banet-Levi Y et al.; Israeli Shigella Study Group. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1–4-year-old Israeli children. Vaccine 28(10), 2231–2235 (2010).
  • Szu SC, Li XR, Schneerson R, Vickers JH, Bryla D, Robbins JB. Comparative immunogenicities of Vi polysaccharide-protein conjugates composed of cholera toxin or its B subunit as a carrier bound to high- or lower-molecular-weight Vi. Infect. Immun. 57(12), 3823–3827 (1989).
  • Acosta CJ, Galindo CM, Deen JL et al. Vaccines against cholera, typhoid fever and shigellosis for developing countries. Expert Opin. Biol. Ther. 4(12), 1939–1951 (2004).
  • Levenson VI, Chernokhvostova EV, Lyubinskaya MM, Salamatova SA, Dzhikidze EK, Stasilevitch ZK. Parenteral immunization with Shigella ribosomal vaccine elicits local IgA response and primes for mucosal memory. Int. Arch. Allergy Appl. Immunol. 87(1), 25–31 (1988).
  • Shim DH, Chang SY, Park SM et al. Immunogenicity and protective efficacy offered by a ribosomal-based vaccine from Shigella flexneri 2a. Vaccine 25(25), 4828–4836 (2007).
  • Phalipon A, Tanguy M, Grandjean C et al. A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J. Immunol. 182(4), 2241–2247 (2009).
  • Borrelli S, Hossany RB, Pinto BM. Immunological evidence for functional rather than structural mimicry by a Shigella flexneri Y polysaccharide-mimetic peptide. Clin. Vaccine Immunol. 15(7), 1106–1114 (2008).
  • Turbyfill KR, Hartman AB, Oaks EV. Isolation and characterization of a Shigella flexneri invasin complex subunit vaccine. Infect. Immun. 68(12), 6624–6632 (2000).
  • Oaks EV, Turbyfill KR. Development and evaluation of a Shigella flexneri 2a and S. sonnei bivalent invasin complex (Invaplex) vaccine. Vaccine 24(13), 2290–2301 (2006).
  • Mallett CP, Hale TL, Kaminski RW et al. Intransal or intragastric immunization with proteosome-Shigella lipopolysaccharide vaccines protects against lethal pneumonia in a murine model of Shigella infection. Infect. Immun. 63(6), 2382–2386 (1995).
  • Riddle MS, Kaminski RW, Williams C et al. Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine 29(40), 7009–7019 (2011).
  • Kaminski RW, Turbyfill KR, Chao C, Ching WM, Oaks EV. Mucosal adjuvanticity of a Shigella invasin complex with DNA-based vaccines. Clin. Vaccine Immunol. 16(4), 574–586 (2009).
  • Martinez-Becerra FJ, Kissmann JM, Diaz-McNair J et al. Broadly protective Shigella vaccine based on type III secretion apparatus proteins. Infect. Immun. 80(3), 1222–1231 (2012).
  • Collins BS. Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12(62), 7–15 (2011).
  • Lewis S, Sadarangani M, Hoe JC, Pollard AJ. Challenges and progress in the development of a serogroup B meningococcal vaccine. Expert Rev. Vaccines 8(6), 729–745 (2009).
  • Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect. Immun. 78(9), 3822–3831 (2010).
  • Schild S, Nelson EJ, Bishop AL, Camilli A. Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect. Immun. 77(1), 472–484 (2009).
  • Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol. 179(11), 7692–7701 (2007).
  • McConnell MJ, Rumbo C, Bou G, Pachón J. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29(34), 5705–5710 (2011).
  • Kadurugamuwa JL, Beveridge TJ. Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob. Agents Chemother. 42(6), 1476–1483 (1998).
  • Camacho AI, de Souza J, Sánchez-Gómez S, Pardo-Ros M, Irache JM, Gamazo C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 29(46), 8222–8229 (2011).
  • Biswas A, Banerjee P, Biswas T. Porin of Shigella dysenteriae directly promotes toll-like receptor 2-mediated CD4+ T cell survival and effector function. Mol. Immunol. 46(15), 3076–3085 (2009).
  • Berlanda Scorza F, Colucci AM, Maggiore L et al. High yield production process for Shigella outer membrane particles. PLoS ONE 7(6), e35616 (2012).
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol. 183(11), 6883–6892 (2009).
  • Lawson LB, Norton EB, Clements JD. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. 23(3), 414–420 (2011).
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine 23(15), 1804–1813 (2005).
  • Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev. Vaccines 10(4), 539–550 (2011).
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol. 12(6), 509–517 (2011).
  • Mosca F, Tritto E, Muzzi A et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA 105(30), 10501–10506 (2008).
  • Schwarz TF. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv. Ther. 26(11), 983–998 (2009).
  • Norton EB, Lawson LB, Freytag LC, Clements JD. Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. Clin. Vaccine Immunol. 18(4), 546–551 (2011).
  • Pizza M, Giuliani MM, Fontana MR et al. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19(17–19), 2534–2541 (2001).
  • Hartman AB, Van De Verg LL, Venkatesan MM. Native and mutant forms of cholera toxin and heat-labile enterotoxin effectively enhance protective efficacy of live attenuated and heat-killed Shigella vaccines. Infect. Immun. 67(11), 5841–5847 (1999).
  • Orr N, Arnon R, Rubin G, Cohen D, Bercovier H, Lowell GH. Enhancement of anti-Shigella lipopolysaccharide (LPS) response by addition of the cholera toxin B subunit to oral and intranasal proteosome-Shigella flexneri 2a LPS vaccines. Infect. Immun. 62(11), 5198–5200 (1994).
  • Fries LF, Montemarano AD, Mallett CP, Taylor DN, Hale TL, Lowell GH. Safety and immunogenicity of a proteosome-Shigella flexneri 2a lipopolysaccharide vaccine administered intranasally to healthy adults. Infect. Immun. 69(7), 4545–4553 (2001).
  • Katz DE, DeLorimier AJ, Wolf MK et al. Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine 21(5-6), 341–346 (2003).
  • Ochoa J, Irache JM, Tamayo I, Walz A, DelVecchio VG, Gamazo C. Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella Enteritidis in mice. Vaccine 25(22), 4410–4419 (2007).
  • Huang JL, Yin YX, Pan ZM et al. Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn model. J. Biomed. Biotechnol. 2010, pii: 589476 (2010).
  • De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov. Today 16(13-14), 569–582 (2011).
  • De Koker S, Lambrecht BN, Willart MA et al. Designing polymeric particles for antigen delivery. Chem. Soc. Rev. 40(1), 320–339 (2011).
  • Burgdorf S, Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr. Opin. Immunol. 20(1), 89–95 (2008).
  • Shen H, Ackerman AL, Cody V et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1), 78–88 (2006).
  • Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 62(4-5), 394–407 (2010).
  • Gupta RK, Singh M, O’Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev. 32(3), 225–246 (1998).
  • Jain S, O’Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev. Vaccines 10(12), 1731–1742 (2011).
  • Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science 272(5258), 54–60 (1996).
  • Demento SL, Cui W, Criscione JM et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33(19), 4957–4964 (2012).
  • Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA 109(4), 1080–1085 (2012).
  • Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet. Res. 37(3), 511–539 (2006).
  • Sharp FA, Ruane D, Claass B et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106(3), 870–875 (2009).
  • Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur. J. Pharm. Sci. 45(4), 475–481 (2012).
  • Malyala P, Chesko J, Ugozzoli M et al. The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J. Pharm. Sci. 97(3), 1155–1164 (2008).
  • Agren LC, Ekman L, Löwenadler B, Lycke NY. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J. Immunol. 158(8), 3936–3946 (1997).
  • Kotturi MF, Botten J, Sidney J et al. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease. PLoS Pathog. 5(12), e1000695 (2009).
  • Ma W, Chen M, Kaushal S et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int. J. Nanomedicine 7, 1475–1487 (2012).
  • Afrin F, Rajesh R, Anam K, Gopinath M, Pal S, Ali N. Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect. Immun. 70(12), 6697–6706 (2002).
  • Prasad S, Cody V, Saucier-Sawyer JK et al. Optimization of stability, encapsulation, release, and cross-priming of tumor antigen-containing PLGA nanoparticles. Pharm. Res. 29(9), 2565–2577 (2012).
  • Hall MA, Stroop SD, Hu MC et al. Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. Infect. Immun. 72(5), 2507–2512 (2004).
  • Mel D, Gangarosa EJ, Radovanovic ML, Arsic BL, Litvinjenko S. Studies on vaccination against bacillary dysentery. 6. Protection of children by oral immunization with streptomycin-dependent Shigella strains. Bull. World Health Organ. 45(4), 457–464 (1971).
  • Levine MM, Gangarosa EJ, Barrow WB, Weiss CF. Shigellosis in custodial institutions. V. Effect of intervention with streptomycin-dependent Shigella sonnei vaccine in an institution with endemic disease. Am. J. Epidemiol. 104(1), 88–92 (1976).
  • Venkatesan M, Fernandez-Prada C, Buysse JM, Formal SB, Hale TL. Virulence phenotype and genetic characteristics of the T32-ISTRATI Shigella flexneri 2a vaccine strain. Vaccine 9(5), 358–363 (1991).
  • Kotloff KL, Pasetti MF, Barry EM et al. Deletion in the Shigella enterotoxin genes further attenuates Shigella flexneri 2a bearing guanine auxotrophy in a Phase 1 trial of CVD 1204 and CVD 1208. J. Infect. Dis. 190(10), 1745–1754 (2004).
  • Kotloff KL, Simon JK, Pasetti MF et al. Safety and immunogenicity of CVD 1208S, a live, oral DeltaguaBA Deltasen Deltaset Shigella flexneri 2a vaccine grown on animal-free media. Hum. Vaccin. 3(6), 268–275 (2007).
  • Simon JK, Maciel M Jr, Weld ED et al. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates. Clin. Immunol. 139(2), 185–192 (2011).
  • Orr N, Katz DE, Atsmon J et al. Community-based safety, immunogenicity, and transmissibility study of the Shigella sonnei WRSS1 vaccine in Israeli volunteers. Infect. Immun. 73(12), 8027–8032 (2005).
  • Barnoy S, Baqar S, Kaminski RW et al. Shigella sonnei vaccine candidates WRSs2 and WRSs3 are as immunogenic as WRSS1, a clinically tested vaccine candidate, in a primate model of infection. Vaccine 29(37), 6371–6378 (2011).
  • Barnoy S, Jeong KI, Helm RF et al. Characterization of WRSs2 and WRSs3, new second-generation virG(icsA)-based Shigella sonnei vaccine candidates with the potential for reduced reactogenicity. Vaccine 28(6), 1642–1654 (2010).
  • Sadorge C, Ndiaye A, Beveridge N et al. Phase 1 clinical trial of live attenuated Shigella dysenteriae type-1 DeltaicsA Deltaent Deltafep DeltastxA:HgR oral vaccine SC599 in healthy human adult volunteers. Vaccine 26(7), 978–987 (2008).
  • Coster TS, Hoge CW, VanDeVerg LL et al. Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infect. Immun. 67(7), 3437–3443 (1999).
  • Katz DE, Coster TS, Wolf MK et al. Two studies evaluating the safety and immunogenicity of a live, attenuated Shigella flexneri 2a vaccine (SC602) and excretion of vaccine organisms in North American volunteers. Infect. Immun. 72(2), 923–930 (2004).
  • Ranallo RT, Thakkar S, Chen Q, Venkatesan MM. Immunogenicity and characterization of WRSF2G11: a second generation live attenuated Shigella flexneri 2a vaccine strain. Vaccine 25(12), 2269–2278 (2007).
  • Rahman KM, Arifeen SE, Zaman K et al. Safety, dose, immunogenicity, and transmissibility of an oral live attenuated Shigella flexneri 2a vaccine candidate (SC602) among healthy adults and school children in Matlab, Bangladesh. Vaccine 29(6), 1347–1354 (2011).
  • McKenzie R, Walker RI, Nabors GS et al. Safety and immunogenicity of an oral, inactivated, whole-cell vaccine for Shigella sonnei: preclinical studies and a Phase I trial. Vaccine 24(18), 3735–3745 (2006).
  • Summerton NA, Welch RW, Bondoc L et al. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of Escherichia coli heat-labile toxin. Vaccine 28(5), 1404–1411 (2010).
  • Hagiwara Y, Kawamura YI, Kataoka K et al. A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J. Immunol. 177(5), 3045–3054 (2006).
  • Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol. 185(10), 5677–5682 (2010).
  • Harandi AM, Medaglini D. Mucosal adjuvants. Curr. HIV Res. 8(4), 330–335 (2010).
  • Blaas SH, Stieber-Gunckel M, Falk W, Obermeier F, Rogler G. CpG-oligodeoxynucleotides stimulate immunoglobulin A secretion in intestinal mucosal B cells. Clin. Exp. Immunol. 155(3), 534–540 (2009).
  • Uematsu S, Fujimoto K, Jang MH et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9(7), 769–776 (2008).
  • Warshakoon HJ, Hood JD, Kimbrell MR et al. Potential adjuvantic properties of innate immune stimuli. Hum. Vaccin. 5(6), 381–394 (2009).
  • Winstone N, Wilson AJ, Morrow G et al. Enhanced control of pathogenic Simian immunodeficiency virus SIVmac239 replication in macaques immunized with an interleukin-12 plasmid and a DNA prime-viral vector boost vaccine regimen. J. Virol. 85(18), 9578–9587 (2011).
  • Muhammad A, Champeimont J, Mayr UB, Lubitz W, Kudela P. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev. Vaccines 11(1), 97–116 (2012).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 60(8), 915–928 (2008).
  • McNeela EA, Lavelle EC. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination. Curr. Top. Microbiol. Immunol. 354, 75–99 (2012).
  • van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv. Drug Deliv. Rev. 52(2), 139–144 (2001).
  • Irache JM, Salman HH, Gomez S, Espuelas S, Gamazo C. Poly(anhydride) nanoparticles as adjuvants for mucosal vaccination. Front. Biosci. (Schol. Ed). 2, 876–890 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.