208
Views
23
CrossRef citations to date
0
Altmetric
Review

Prostate cancer vaccines in clinical trials

Pages 857-868 | Published online: 09 Jan 2014

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J. Clin. 62(1), 10–29 (2012).
  • Mostaghel EA, Page ST, Lin DW et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 67(10), 5033–5041 (2007).
  • Attard G, Reid AH, A’Hern R et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27(23), 3742–3748 (2009).
  • de Bono JS, Logothetis CJ, Molina A et al.; COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364(21), 1995–2005 (2011).
  • Dumas L, Payne H, Chowdhury S. The evolution of anti-androgens: MDV3100 comes of age. Expert Rev. Anticancer Ther. 12(2), 131–133 (2012).
  • Scher H, Fizazi, K, Saad F et al. Effect of MDV3100, and androgen receptor ignaling inhibitor (ARSI), on overall survival of patients with prostate cancer postdocetaxel: results from a Phase III AFFIRM study. J. Clin. Oncol. 30(Suppl. 5), Abstract LBA1 (2012).
  • Nilsson S, Parker C, Haugen I et al. Alpharadin, a novel, highly targeted alpha pharmaceutical with a good safety profile for patients with CRPC and bone metastases: combined analyses of Phase I and II clinical trials. Presented at: 2010 Genitourinary Cancers Symposium. Orlando, FL, USA, 14–16 February 2012 (Abstract 106).
  • Cavacini LA, Duval M, Eder JP, Posner MR. Evidence of determinant spreading in the antibody responses to prostate cell surface antigens in patients immunized with prostate-specific antigen. Clin. Cancer Res. 8(2), 368–373 (2002).
  • Eder JP, Kantoff PW, Roper K et al. A Phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res. 6(5), 1632–1638 (2000).
  • Gulley J, Chen AP, Dahut W et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53(2), 109–117 (2002).
  • Gulley JL, Arlen PM, Bastian A et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 11(9), 3353–3362 (2005).
  • Heiser A, Coleman D, Dannull J et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109(3), 409–417 (2002).
  • Kaufman HL, Wang W, Manola J et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22(11), 2122–2132 (2004).
  • Meidenbauer N, Harris DT, Spitler LE, Whiteside TL. Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. Prostate 43(2), 88–100 (2000).
  • Pavlenko M, Roos AK, Lundqvist A et al. A Phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 91(4), 688–694 (2004).
  • Sanda MG, Smith DC, Charles LG et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 53(2), 260–266 (1999).
  • Burch PA, Croghan GA, Gastineau DA et al. Immunotherapy (APC8015, Provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a Phase 2 trial. Prostate 60(3), 197–204 (2004).
  • Fong L, Brockstedt D, Benike C et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J. Immunol. 167(12), 7150–7156 (2001).
  • Rini BI. Technology evaluation: APC-8015, Dendreon. Curr. Opin. Mol. Ther. 4(1), 76–79 (2002).
  • Small EJ, Fratesi P, Reese DM et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol. 18(23), 3894–3903 (2000).
  • Elsässer-Beile U, Bühler P, Wolf P. Targeted therapies for prostate cancer against the prostate specific membrane antigen. Curr. Drug Targets 10(2), 118–125 (2009).
  • Murphy GP, Tjoa BA, Simmons SJ et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a Phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38(1), 73–78 (1999).
  • Tjoa BA, Erickson SJ, Bowes VA et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate 32(4), 272–278 (1997).
  • Tjoa BA, Simmons SJ, Bowes VA et al. Evaluation of Phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 36(1), 39–44 (1998).
  • Kawada J, Wada H, Isobe M et al. Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int. J. Cancer 130(3), 584–592 (2012).
  • Antonarakis ES, Carducci MA, Eisenberger MA et al. Phase I rapid dose-escalation study of AGS-1C4D4, a human anti-PSCA (prostate stem cell antigen) monoclonal antibody, in patients with castration-resistant prostate cancer: a PCCTC trial. Cancer Chemother. Pharmacol. 69(3), 763–771 (2012).
  • Alves PM, Faure O, Graff-Dubois S et al. STEAP, a prostate tumor antigen, is a target of human CD8+ T cells. Cancer Immunol. Immunother. 55(12), 1515–1523 (2006).
  • Suresh K, Scheid E, Klotz L, Venkateswaran V, Gauldie J, Foley R. Induction of specific human cytotoxic T cells using dendritic cells transduced with an adenovector encoding rat epidermal growth factor receptor 2. Int. J. Oncol. 39(4), 907–913 (2011).
  • Naz RK, Shiley B. Prophylactic vaccines for prevention of prostate cancer. Front. Biosci. (Schol. Ed.) 4, 932–940 (2012).
  • Yao A, Harada M, Matsueda S et al. Identification of parathyroid hormone-related protein-derived peptides immunogenic in human histocompatibility leukocyte antigen-A24+ prostate cancer patients. Br. J. Cancer 91(2), 287–296 (2004).
  • Su Z, Dannull J, Yang BK et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J. Immunol. 174(6), 3798–3807 (2005).
  • Vonderheide RH, Domchek SM, Schultze JL et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res. 10(3), 828–839 (2004).
  • Slovin SF, Ragupathi G, Musselli C et al. Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54(7), 694–702 (2005).
  • Slovin SF, Ragupathi G, Musselli C et al. Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21(23), 4292–4298 (2003).
  • Slovin SF, Ragupathi G, Adluri S et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl Acad. Sci. USA 96(10), 5710–5715 (1999).
  • Noguchi M, Itoh K, Yao A et al. Immunological evaluation of individualized peptide vaccination with a low dose of estramustine for HLA-A24+ HRPC patients. Prostate 63(1), 1–12 (2005).
  • Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM. Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int. J. Cancer 94(6), 842–849 (2001).
  • Li W, Berencsi K, Basak S et al. Human colorectal cancer (CRC) antigen CO17-1A/GA733 encoded by adenovirus inhibits growth of established CRC cells in mice. J. Immunol. 159(2), 763–769 (1997).
  • Liu DW, Tsao YP, Hsieh CH et al. Induction of CD8 T cells by vaccination with recombinant adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth. J. Virol. 74(19), 9083–9089 (2000).
  • Rosenberg SA, Zhai Y, Yang JC et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J. Natl. Cancer Inst. 90(24), 1894–1900 (1998).
  • Tripathy SK, Black HB, Goldwasser E, Leiden JM. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 2(5), 545–550 (1996).
  • Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J. Immunother. 33(6), 639–647 (2010).
  • Johnson LE, Frye TP, Arnot AR et al. Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine 24(3), 293–303 (2006).
  • McNeel DG, Dunphy EJ, Davies JG et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27(25), 4047–4054 (2009).
  • Wolf P, Alt K, Wetterauer D et al. Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer. J. Immunother. 33(3), 262–271 (2010).
  • Carducci MA. Translational research in the hormone refractory dunning prostate cancer model. Cancer 75, 2013–2020 (1995).
  • Simons JW, Mikhak B, Chang JF et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59(20), 5160–5168 (1999).
  • Heiser A, Dahm P, Yancey DR et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol. 164(10), 5508–5514 (2000).
  • Heiser A, Maurice MA, Yancey DR et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. 166(5), 2953–2960 (2001).
  • Laus R. Dendritic cell immunotherapy of prostate cancer: preclinical models and early clnical experience. Cancer Res. Therap. Control 11, 1–10 (2001).
  • Irvine B, Restlifo NP. The next wave of recombinant and synthetic anticancer vaccines. Semin. Cancer Biol. 6, 337–347 (1995).
  • Disis ML, Shiota FM, McNeel DG, Knutson KL. Soluble cytokines can act as effective adjuvants in plasmid DNA vaccines targeting self tumor antigens. Immunobiology 207(3), 179–186 (2003).
  • Ferraro B, Cisper NJ, Talbott KT et al. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses. Hum. Vaccin. 7, 120–127 (2011).
  • Krupa M, Canamero M, Gomez CE, Najera JL, Gil J, Esteban M. Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine 29(7), 1504–1513 (2011).
  • Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P. Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate 62(3), 217–223 (2005).
  • Vittes GE, Harden EL, Ottensmeier CH, Rice J, Stevenson FK. DNA fusion gene vaccines induce cytotoxic T-cell attack on naturally processed peptides of human prostate-specific membrane antigen. Eur. J. Immunol. 41(8), 2447–2456 (2011).
  • Abern M, Kaufman HL, Latchamsetty K. An update on TroVax for the treatment of progressive castration-resistant prostate cancer. Onco. Targets Ther. 4, 33–41 (2011).
  • Durso RJ, Andjelic S, Gardner JP et al. A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses. Clin. Cancer Res. 13(13), 3999–4008 (2007).
  • Youln K, Xiaodong W, Xiuheng L et al. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett. 293, 254–262 (2010).
  • Terasawa H, Tsang KY, Gulley J, Arlen P, Schlom J. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin. Cancer Res. 8(1), 41–53 (2002).
  • Correale P, Walmsley K, Nieroda C et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J. Natl. Cancer Inst. 89(4), 293–300 (1997).
  • Correale P, Walmsley K, Zaremba S, Zhu M, Schlom J, Tsang KY. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. J. Immunol. 161(6), 3186–3194 (1998).
  • Hodge JW, Schlom J, Donohue SJ et al. A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate. Int. J. Cancer 63(2), 231–237 (1995).
  • Karan D, Krieg AM, Lubaroff DM. Paradoxical enhancement of CD8 T cell-dependent anti-tumor protection despite reduced CD8 T cell responses with addition of a TLR9 agonist to a tumor vaccine. Int. J. Cancer 121(7), 1520–1528 (2007).
  • Lubaroff DM, Karan D, Andrews MP et al. Decreased cytotoxic T cell activity generated by co-administration of PSA vaccine and CpG ODN is associated with increased tumor protection in a mouse model of prostate cancer. Vaccine 24(35–36), 6155–6162 (2006).
  • Siemens DR, Elzey BD, Lubaroff DM et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J. Immunol. 166(2), 731–735 (2001).
  • Geary SM, Lemke CD, Lubaroff DM, Salem AK. Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN. Cancer Immunol. Immunother. 60(9), 1309–1317 (2011).
  • Apetoh L, Végran F, Ladoire S, Ghiringhelli F. Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr. Mol. Med. 11(5), 365–372 (2011).
  • Valone FH, Small E, MacKenzie M et al. Dendritic cell-based treatment of cancer: closing in on a cellular therapy. Cancer J. 7(Suppl. 2), S53–S61 (2001).
  • Burch PA, Breen JK, Buckner JC et al. Priming tissue-specific cellular immunity in a Phase I trial of autologous dendritic cells for prostate cancer. Clin. Cancer Res. 6(6), 2175–2182 (2000).
  • Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM. Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91(1), 222–230 (1998).
  • Dendreon. Dendreon’s Second Randomized Phase 3 D9902A Trial Shows Provenge Extends Survival in Patients with Advanced Prostate Cancer. Dendreon, WA, USA (2005).
  • Dendreon. Dendreon’s Phase 3 D9901 Trial Shows Provenge Extends Survival in Patients with Advanced Prostate Cancer. Dendreon, WA, USA (2004).
  • Dendreon. Provenge Fact Sheet. Dendreon, WA, USA (2010).
  • Carballido E, Fishman M. Sipuleucel-T: prototype for development of anti-tumor vaccines. Curr. Oncol. Rep. 13(2), 112–119 (2011).
  • Higano CS, Small EJ, Schellhammer P et al. Sipuleucel-T. Nat. Rev. Drug Discov. 9(7), 513–514 (2010).
  • Kantoff PW, Higano CS, Shore ND et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Beer TM, Bernstein GT, Corman JM et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin. Cancer Res. 17(13), 4558–4567 (2011).
  • Chambers JD, Neumann PJ. Listening to Provenge – what a costly cancer treatment says about future Medicare policy. N. Engl. J. Med. 364(18), 1687–1689 (2011).
  • Goozner M. Concerns about Provenge simmer as CMS ponders coverage. J. Natl. Cancer Inst. 103(4), 288–289 (2011).
  • Tannock IF, de Wit R, Berry WR et al.; TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351(15), 1502–1512 (2004).
  • Huber ML, Haynes L, Parker C, Iversen P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J. Natl. Cancer Inst. 104(4), 273–279 (2012).
  • Madan RA, Gulley JL, Fojo T, Dahut WL. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist 15(9), 969–975 (2010).
  • Stein WD, Gulley JL, Schlom J et al. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clin. Cancer Res. 17(4), 907–917 (2011).
  • DiPaola RS, Plante M, Kaufman H et al. A Phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J. Transl. Med. 4, 1 (2006).
  • Doehn C, Kausch I, Böhmer T, Sommerauer M, Jocham D. Drug evaluation: Therion’s rV-PSA-TRICOM + rF-PSA-TRICOM prime–boost prostate cancer vaccine. Curr. Opin. Mol. Ther. 9(2), 183–189 (2007).
  • Gulley JL, Arlen PM, Madan RA et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother. 59(5), 663–674 (2010).
  • Halabi S, Small EJ, Kantoff PW et al. Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J. Clin. Oncol. 21(7), 1232–1237 (2003).
  • Kantoff PW, Schuetz TJ, Blumenstein BA et al. Overall survival analysis of a Phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28(7), 1099–1105 (2010).
  • Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs 18(7), 1001–1011 (2009).
  • Lubaroff DM, Konety B, Link BK et al. Clinical protocol: Phase I study of an adenovirus/prostate-specific antigen vaccine in men with metastatic prostate cancer. Hum. Gene Ther. 17(2), 220–229 (2006).
  • Lubaroff DM, Konety BR, Link B et al. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin. Cancer Res. 15(23), 7375–7380 (2009).
  • Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).
  • Mercader M, Bodner BK, Moser MT et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl Acad. Sci. USA 98(25), 14565–14570 (2001).
  • Roden AC, Moser MT, Tri SD et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 173(10), 6098–6108 (2004).
  • Drake CG, Doody AD, Mihalyo MA et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7(3), 239–249 (2005).
  • Lubaroff D, Williams RD, Vaena D et al. An ongoing Phase II trial of an adenovirus vaccine for prostate cancer. Proc. Am. Assoc. Cancer Res. 53, 651 (2012).
  • Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol. Oncol. 24(5), 419–424 (2006).
  • Higano CS, Corman JM, Smith DC et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113(5), 975–984 (2008).
  • Higano C, Saad F, Somer B et al. A Phase III trial of GVAX immunotherapy for prostate cancer versus doceaxel plus prednisone in asymptomatic, castration-resistant prostate cancer. Presented at: 2009 GU Cancers Symposium. Orlando, FL, USA, 26–28 February 2009.
  • Small E, Demkow T, Gerritson WR et al. A Phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer. Presented at: GU Cancers Symposium. Orlando, FL, USA, 26–28 February 2009.
  • Gnjatic S, Altorki NK, Tang DN et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin. Cancer Res. 15(6), 2130–2139 (2009).
  • Tagawa ST, Lee P, Snively J et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 98(1), 144–154 (2003).
  • Baxevanis CN, Voutsas IF, Gritzapis AD, Perez SA, Papamichail M. HER-2/neu as a target for cancer vaccines. Immunotherapy 2(2), 213–226 (2010).
  • Frank MO, Kaufman J, Tian S et al. Harnessing naturally occurring tumor immunity: a clinical vaccine trial in prostate cancer. PLoS ONE 5(9), e12367 (2010).
  • Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int. J. Cancer 126(4), 909–918 (2010).
  • Noguchi M, Kakuma T, Uemura H et al. A randomized Phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer. Cancer Immunol. Immunother. 59(7), 1001–1009 (2010).
  • Noguchi M, Uemura H, Naito S, Akaza H, Yamada A, Itoh K. A Phase I study of personalized peptide vaccination using 14 kinds of vaccine in combination with low-dose estramustine in HLA-A24-positive patients with castration-resistant prostate cancer. Prostate 71(5), 470–479 (2011).
  • Perez SA, von Hofe E, Kallinteris NL et al. A new era in anticancer peptide vaccines. Cancer 116(9), 2071–2080 (2010).
  • Uemura H, Fujimoto K, Mine T et al. Immunological evaluation of personalized peptide vaccination monotherapy in patients with castration-resistant prostate cancer. Cancer Sci. 101(3), 601–608 (2010).
  • Weber JS, Vogelzang NJ, Ernstoff MS et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J. Immunother. 34(7), 556–567 (2011).
  • Noguchi M, Kobayashi K, Suetsugu N et al. Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate 57(1), 80–92 (2003).
  • Noguchi M, Mine T, Yamada A et al. Combination therapy of personalized peptide vaccination and low-dose estramustine phosphate for metastatic hormone refractory prostate cancer patients: an analysis of prognostic factors in the treatment. Oncol. Res. 16(7), 341–349 (2007).
  • Noguchi M, Yao A, Harada M et al. Immunological evaluation of neoadjuvant peptide vaccination before radical prostatectomy for patients with localized prostate cancer. Prostate 67(9), 933–942 (2007).
  • Marshall NA, Christie LE, Munro LR et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103(5), 1755–1762 (2004).
  • Rössner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur. J. Immunol. 35(12), 3533–3544 (2005).
  • Wang L, Goillot E, Tepper RI. IL-10 inhibits alloreactive cytotoxic T lymphocyte generation in vivo. Cell. Immunol. 159(2), 152–169 (1994).
  • Newcom SR, Kadin ME, Ansari AA, Diehl V. L-428 nodular sclerosing Hodgkin’s cell secretes a unique transforming growth factor-beta active at physiologic pH. J. Clin. Invest. 82(6), 1915–1921 (1988).
  • Potenza MA, Nacci C, Mitolo-Chieppa D. Immunoregulatory effects of L-arginine and therapeutical implications. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1(1), 67–77 (2001).
  • Uyttenhove C, Pilotte L, Théate I et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9(10), 1269–1274 (2003).
  • Freeman GJ, Long AJ, Iwai Y et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192(7), 1027–1034 (2000).
  • Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192(2), 295–302 (2000).
  • Tarhini AA, Iqbal F. CTLA-4 blockade: therapeutic potential in cancer treatments. Onco. Targets. Ther. 3, 15–25 (2010).
  • Madan RA, Mohebtash M, Arlen PM et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a Phase 1 dose–escalation trial. Lancet Oncol. 13(5), 501–508 (2012).
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2), 137–148 (2004).
  • Geldmacher A, Freier A, Losch FO, Walden P. Therapeutic vaccination for cancer immunotherapy: antigen selection and clinical responses. Hum. Vaccin. 7, 115–119 (2011).
  • Hales RK, Banchereau J, Ribas A et al. Assessing oncologic benefit in clinical trials of immunotherapy agents. Ann. Oncol. 21(10), 1944–1951 (2010).
  • Hoos A, Britten CM, Huber C, O’Donnell-Tormey J. A methodological framework to enhance the clinical success of cancer immunotherapy. Nat. Biotechnol. 29(10), 867–870 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.