585
Views
103
CrossRef citations to date
0
Altmetric
Review

Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach

, , , &
Pages 985-994 | Published online: 09 Jan 2014

References

  • Poland GA, Kennedy RB, Ovsyannikova IG. Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog. 7(12), e1002344 (2011).
  • Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA. Systems biology approaches to new vaccine development. Curr. Opin. Immunol. 23(3), 436–443 (2011).
  • Hope-Simpson RE. The role of season in the epidemiology of influenza. J. Hyg. (Lond). 86(1), 35–47 (1981).
  • Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 8(2), e1000316 (2010).
  • Dowell SF. Seasonality – still confusing. Epidemiol. Infect. 140(1), 87–90 (2012).
  • Cannell JJ, Vieth R, Umhau JC et al. Epidemic influenza and vitamin D. Epidemiol. Infect. 134(6), 1129–1140 (2006).
  • Barker WH, Borisute H, Cox C. A study of the impact of influenza on the functional status of frail older people. Arch. Intern. Med. 158(6), 645–650 (1998).
  • Thompson WW, Shay DK, Weintraub E et al. Influenza-associated hospitalizations in the United States. JAMA 292(11), 1333–1340 (2004).
  • Thompson WW, Shay DK, Weintraub E et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289(2), 179–186 (2003).
  • Nordin J, Mullooly J, Poblete S et al. Influenza vaccine effectiveness in preventing hospitalizations and deaths in persons 65 years or older in Minnesota, New York, and Oregon: data from 3 health plans. J. Infect. Dis. 184(6), 665–670 (2001).
  • Molinari NA, Ortega-Sanchez IR, Messonnier ML et al. The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25(27), 5086–5096 (2007).
  • Govaert TM, Thijs CT, Masurel N, Sprenger MJ, Dinant GJ, Knottnerus JA. The efficacy of influenza vaccination in elderly individuals. A randomized double-blind placebo-controlled trial. JAMA 272(21), 1661–1665 (1994).
  • Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. (Lond.) 70(4), 767–777 (1972).
  • Potter CW, Oxford JS. Determinants of immunity to influenza infection in man. Br. Med. Bull. 35(1), 69–75 (1979).
  • Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24(8), 1159–1169 (2006).
  • Mysliwska J, Trzonkowski P, Szmit E, Brydak LB, Machala M, Mysliwski A. Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp. Gerontol. 39(10), 1447–1458 (2004).
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309(1), 13–17 (1983).
  • Doherty PC, Topham DJ, Tripp RA. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol. Rev. 150, 23–44 (1996).
  • Shahid Z, Kleppinger A, Gentleman B, Falsey AR, McElhaney JE. Clinical and immunologic predictors of influenza illness among vaccinated older adults. Vaccine 28(38), 6145–6151 (2010).
  • McElhaney JE, Gravenstein S, Upshaw CM et al. Granzyme B: a marker of risk for influenza in institutionalized older adults. Vaccine 19(27), 3744–3751 (2001).
  • McElhaney JE, Xie D, Hager WD et al. T cell responses are better correlates of vaccine protection in the elderly. J. Immunol. 176(10), 6333–6339 (2006).
  • Lee JB, Oelke M, Ramachandra L, Canaday DH, Schneck JP. Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors. Immun. Ageing 8, 6 (2011).
  • Zhou X, McElhaney JE. Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine 29(11), 2169–2177 (2011).
  • Deng Y, Jing Y, Campbell AE, Gravenstein S. Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J. Immunol. 172(6), 3437–3446 (2004).
  • Gross PA, Quinnan GV Jr, Weksler ME, Gaerlan PF, Denning CR. Immunization of elderly people with high doses of influenza vaccine. J. Am. Geriatr. Soc. 36(3), 209–212 (1988).
  • Palache AM, Beyer WE, Sprenger MJ et al. Antibody response after influenza immunization with various vaccine doses: a double-blind, placebo-controlled, multi-centre, dose-response study in elderly nursing-home residents and young volunteers. Vaccine 11(1), 3–9 (1993).
  • Falsey AR, Treanor JJ, Tornieporth N, Capellan J, Gorse GJ. Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis. 200(2), 172–180 (2009).
  • Chen WH, Cross AS, Edelman R, Sztein MB, Blackwelder WC, Pasetti MF. Antibody and Th1-type cell-mediated immune responses in elderly and young adults immunized with the standard or a high dose influenza vaccine. Vaccine 29(16), 2865–2873 (2011).
  • Targonski PV, Jacobson RM, Poland GA. Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine 25(16), 3066–3069 (2007).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663), 1529–1531 (2004).
  • Aldridge JR Jr, Moseley CE, Boltz DA et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA 106(13), 5306–5311 (2009).
  • Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206(1), 79–87 (2009).
  • Koyama S, Ishii KJ, Kumar H et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179(7), 4711–4720 (2007).
  • Julkunen I, Melén K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S. Inflammatory responses in influenza A virus infection. Vaccine 19(Suppl. 1), S32–S37 (2000).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1(2), 135–145 (2001).
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11(5), 373–384 (2010).
  • van Duin D, Mohanty S, Thomas V et al. Age-associated defect in human TLR-1/2 function. J. Immunol. 178(2), 970–975 (2007).
  • Kong KF, Delroux K, Wang X et al. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J. Virol. 82(15), 7613–7623 (2008).
  • Sridharan A, Esposo M, Kaushal K et al. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr.) 33(3), 363–376 (2011).
  • Panda A, Qian F, Mohanty S et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184(5), 2518–2527 (2010).
  • Reiser H, Stadecker MJ. Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases. N. Engl. J. Med. 335(18), 1369–1377 (1996).
  • Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat. Rev. Immunol. 2(2), 116–126 (2002).
  • van Duin D, Allore HG, Mohanty S et al. Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J. Infect. Dis. 195(11), 1590–1597 (2007).
  • Lodoen MB, Lanier LL. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18(4), 391–398 (2006).
  • Achdout H, Arnon TI, Markel G et al. Enhanced recognition of human NK receptors after influenza virus infection. J. Immunol. 171(2), 915–923 (2003).
  • Denney L, Aitken C, Li CK et al. Reduction of natural killer but not effector CD8 T lymphocytes in three consecutive cases of severe/lethal H1N1/09 influenza A virus infection. PLoS ONE 5(5), e10675 (2010).
  • Ennis FA, Meager A, Beare AS et al. Interferon induction and increased natural killer-cell activity in influenza infections in man. Lancet 2(8252), 891–893 (1981).
  • Gazit R, Gruda R, Elboim M et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7(5), 517–523 (2006).
  • Schapiro JM, Segev Y, Rannon L, Alkan M, Rager-Zisman B. Natural killer (NK) cell response after vaccination of volunteers with killed influenza vaccine. J. Med. Virol. 30(3), 196–200 (1990).
  • Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunol. Today 16(1), 12–16 (1995).
  • Zhang Y, Wallace DL, de Lara CM et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121(2), 258–265 (2007).
  • Franceschi C, Bonafè M, Valensin S et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).
  • Giuliani N, Sansoni P, Girasole G et al. Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp. Gerontol. 36(3), 547–557 (2001).
  • Ferrucci L, Harris TB, Guralnik JM et al. Serum IL-6 level and the development of disability in older persons. J. Am. Geriatr. Soc. 47(6), 639–646 (1999).
  • Leng SX, Xue QL, Tian J, Walston JD, Fried LP. Inflammation and frailty in older women. J. Am. Geriatr. Soc. 55(6), 864–871 (2007).
  • Stout-Delgado HW, Du W, Shirali AC, Booth CJ, Goldstein DR. Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection. Cell Host Microbe 6(5), 446–456 (2009).
  • Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).
  • Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol. Rev. 205, 72–93 (2005).
  • Mackall CL, Fleisher TA, Brown MR et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332(3), 143–149 (1995).
  • Mackall CL, Gress RE. Thymic aging and T-cell regeneration. Immunol. Rev. 160, 91–102 (1997).
  • Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J. Immunol. 182(2), 784–792 (2009).
  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J. Exp. Med. 205(3), 711–723 (2008).
  • Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech. Ageing Dev. 127(3), 274–281 (2006).
  • Schwanninger A, Weinberger B, Weiskopf D et al. Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults. Immun. Ageing 5, 14 (2008).
  • Almanzar G, Schwaiger S, Jenewein B et al. IFN-γ production by CMV-specific CD8+ T cells is high in elderly donors. Exp. Gerontol. 39(5), 863–5; author reply 867 (2004).
  • Effros RB, Boucher N, Porter V et al. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp. Gerontol. 29(6), 601–609 (1994).
  • Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J. Virol. 75(24), 12182–12187 (2001).
  • Wagar LE, Rosella L, Crowcroft N et al. Humoral and cell-mediated immunity to pandemic H1N1 influenza in a Canadian cohort one year post-pandemic: implications for vaccination. PLoS ONE 6(11), e28063 (2011).
  • Haynes L, Eaton SM. The effect of age on the cognate function of CD4+ T cells. Immunol. Rev. 205, 220–228 (2005).
  • Allman D, Miller JP. B cell development and receptor diversity during aging. Curr. Opin. Immunol. 17(5), 463–467 (2005).
  • Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin. Immunol. 17(5), 378–384 (2005).
  • Gelder CM, Lambkin R, Hart KW et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J. Infect. Dis. 185(1), 114–117 (2002).
  • Lambkin R, Novelli P, Oxford J, Gelder C. Human genetics and responses to influenza vaccination: clinical implications. Am. J. Pharmacogenomics 4(5), 293–298 (2004).
  • Marchant A, Pihlgren M, Goetghebuer T et al.; Medical Research Council Gambia Twin Study Group. Predominant influence of environmental determinants on the persistence and avidity maturation of antibody responses to vaccines in infants. J. Infect. Dis. 193(11), 1598–1605 (2006).
  • Poland GA, Ovsyannikova IG, Jacobson RM. Immunogenetics of seasonal influenza vaccine response. Vaccine 26(Suppl. 4), D35–D40 (2008).
  • Albright FS, Orlando P, Pavia AT, Jackson GG, Cannon Albright LA. Evidence for a heritable predisposition to death due to influenza. J. Infect. Dis. 197(1), 18–24 (2008).
  • Diaz-Mitoma F, Alvarez-Maya I, Dabrowski A et al. Transcriptional analysis of human peripheral blood mononuclear cells after influenza immunization. J. Clin. Virol. 31(2), 100–112 (2004).
  • Mubareka S, Palese P. Human genes and influenza. J. Infect. Dis. 197(1), 1–3 (2008).
  • Hashiba T, Suzuki M, Nagashima Y et al. Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther. 8(19), 1499–1507 (2001).
  • Kash JC, Basler CF, Garcia-Sastre A et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J. Virol. 78, 9499–9511 (2004).
  • Cummins NW, Weaver EA, May SM et al. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J. 26(7), 2911–2918 (2012).
  • Gelder C, Davenport M, Barnardo M et al. Six unrelated HLA-DR-matched adults recognize identical CD4+ T cell epitopes from influenza A haemagglutinin that are not simply peptides with high HLA-DR binding affinities. Int. Immunol. 10(2), 211–222 (1998).
  • Gelder CM, Lamb JR, Askonas BA. Human CD4+ T-cell recognition of influenza A virus hemagglutinin after subunit vaccination. J. Virol. 70(7), 4787–4790 (1996).
  • Boon AC, de Mutsert G, Graus YM et al. Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J. Virol. 76(5), 2567–2572 (2002).
  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75(22), 10730–10737 (2001).
  • Puthothu B, Forster J, Heinzmann A, Krueger M. TLR-4 and CD14 polymorphisms in respiratory syncytial virus associated disease. Dis. Markers 22(5-6), 303–308 (2006).
  • Mibayashi M, Martínez-Sobrido L, Loo YM, Cárdenas WB, Gale M Jr, García-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81(2), 514–524 (2007).
  • Poland GA, Levine MM, Clemens JD. Developing the next generation of vaccinologists. Vaccine 28(52), 8227–8228 (2010).
  • Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J. 13(3), 438–444 (2011).
  • Poland GA, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Jacobson RM. Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. OMICS 15(9), 625–636 (2011).
  • Poland GA, Ovsyannikova IG, Jacobson RM. Vaccinomics and personalized vaccinology. In: The Jordan Report: Accelerated Development of Vaccines. NIH, MD, USA, 11–18 (2012).
  • Tegnér J, Nilsson R, Bajic VB, Björkegren J, Ravasi T. Systems biology of innate immunity. Cell. Immunol. 244(2), 105–109 (2006).
  • Draghici S, Khatri P, Tarca AL et al. A systems biology approach for pathway level analysis. Genome Res. 17(10), 1537–1545 (2007).
  • Herrgård MJ, Swainston N, Dobson P et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26(10), 1155–1160 (2008).
  • Querec TD, Akondy RS, Lee EK et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10(1), 116–125 (2009).
  • Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011).
  • Kohl P, Crampin EJ, Quinn TA, Noble D. Systems biology: an approach. Clin. Pharmacol. Ther. 88(1), 25–33 (2010).
  • Midgley CM, Putz MM, Weber JN, Smith GL. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J. Gen. Virol. 89(Pt 12), 2992–2997 (2008).
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity 33(4), 516–529 (2010).
  • Haralambieva IH, Poland GA. Vaccinomics, predictive vaccinology and the future of vaccine development. Future Microbiol. 5(12), 1757–1760 (2010).
  • Poland GA, Marcuse EK. Developing vaccine policy: attributes of ‘just policy’ and a proposed template to guide decision and policy making. Vaccine 29(44), 7577–7578 (2011).
  • Roukens AH, Soonawala D, Joosten SA et al. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PLoS ONE 6(12), e27753 (2011).
  • Levin MJ. Varicella vaccination of immunocompromised children. J. Infect. Dis. 197(Suppl. 2), S200–S206 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.