492
Views
19
CrossRef citations to date
0
Altmetric
Review

Virus-like particle-based vaccines against hepatitis C virus infection

&
Pages 143-154 | Published online: 09 Jan 2014

References

  • Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244(4902), 359–362 (1989).
  • Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5(9), 558–567 (2005).
  • Fried MW, Shiffman ML, Reddy KR et al. PEGinterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347(13), 975–982 (2002).
  • Manns MP, McHutchison JG, Gordon SC et al. PEGinterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358(9286), 958–965 (2001).
  • Kim JL, Morgenstern KA, Lin C et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87(2), 343–355 (1996).
  • Wakita T, Pietschmann T, Kato T et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11(7), 791–796 (2005).
  • Barth H, Liang TJ, Baumert TF. Hepatitis C virus entry: molecular biology and clinical implications. Hepatology 44(3), 527–535 (2006).
  • Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM. Antiviral strategies in hepatitis C virus infection. J. Hepatol. 56(Suppl. 1), S88–S100 (2012).
  • Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 138(2), 447–462 (2010).
  • Butt AA, Umbleja T, Andersen JW, Sherman KE, Chung RT. Impact of PEGinterferon alpha and ribavirin treatment on lipid profiles and insulin resistance in hepatitis C virus/HIV-coinfected persons: the AIDS Clinical Trials Group A5178 Study. Clin. Infect. Dis. 55(5), 631–638 (2012).
  • Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev. Vaccines 8(3), 333–345 (2009).
  • Alvarez-Lajonchere L, Duenas-Carrera S. Complete definition of immunological correlates of protection and clearance of hepatitis C virus infection: a relevant pending task for vaccine development. Int. Rev. Immunol. 31(3), 223–242 (2012).
  • Lauer GM, Barnes E, Lucas M et al. High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127(3), 924–936 (2004).
  • Smyk-Pearson S, Tester IA, Lezotte D, Sasaki AW, Lewinsohn DM, Rosen HR. Differential antigenic hierarchy associated with spontaneous recovery from hepatitis C virus infection: implications for vaccine design. J. Infect. Dis. 194(4), 454–463 (2006).
  • Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J. Exp. Med. 209(1), 61–75 (2012).
  • Spada E, Mele A, Berton A et al. Multispecific T cell response and negative HCV RNA tests during acute HCV infection are early prognostic factors of spontaneous clearance. Gut 53(11), 1673–1681 (2004).
  • Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436(7053), 946–952 (2005).
  • Grakoui A, Shoukry NH, Woollard DJ et al. HCV persistence and immune evasion in the absence of memory T cell help. Science 302(5645), 659–662 (2003).
  • Shoukry NH, Grakoui A, Houghton M et al. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med. 197(12), 1645–1655 (2003).
  • Pestka JM, Zeisel MB, Blaser E et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc. Natl Acad. Sci. USA 104(14), 6025–6030 (2007).
  • Raghuraman S, Park H, Osburn WO, Winkelstein E, Edlin BR, Rehermann B. Spontaneous clearance of chronic hepatitis C virus infection is associated with appearance of neutralizing antibodies and reversal of T-cell exhaustion. J. Infect. Dis. 205(5), 763–771 (2012).
  • Edwards VC, Tarr AW, Urbanowicz RA, Ball JK. The role of neutralizing antibodies in hepatitis C virus infection. J. Gen. Virol. 93(Pt 1), 1–19 (2012).
  • Morin TJ, Broering TJ, Leav BA et al. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog. 8(8), e1002895 (2012).
  • Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J. Hepatol. 54(6), 1273–1285 (2011).
  • Dahari H, Feinstone SM, Major ME. Meta-analysis of hepatitis C virus vaccine efficacy in chimpanzees indicates an importance for structural proteins. Gastroenterology 139(3), 965–974 (2010).
  • Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part one: advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin. Ther. Pat. 21(12), 1811–1830 (2011).
  • Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities. Expert Opin. Ther. Pat. 22(4), 391–415 (2012).
  • Yu CI, Chiang BL. A new insight into hepatitis C vaccine development. J. Biomed. Biotechnol. 2010, 548280 (2010).
  • Feinstone SM, Hu DJ, Major ME. Prospects for prophylactic and therapeutic vaccines against hepatitis C virus. Clin. Infect. Dis. 55(Suppl. 1), S25–S32 (2012).
  • Barnes E, Folgori A, Capone S et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci. Transl. Med. 4(115), 115ra111 (2012).
  • Halliday J, Klenerman P, Barnes E. Vaccination for hepatitis C virus: closing in on an evasive target. Expert Rev. Vaccines 10(5), 659–672 (2011).
  • Farci P, Shimoda A, Wong D et al. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc. Natl Acad. Sci. USA 93(26), 15394–15399 (1996).
  • Folgori A, Capone S, Ruggeri L et al. A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat. Med. 12(2), 190–197 (2006).
  • Puig M, Mihalik K, Tilton JC et al. CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 44(3), 736–745 (2006).
  • Law M, Maruyama T, Lewis J et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14(1), 25–27 (2008).
  • Meunier JC, Russell RS, Goossens V et al. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus. J. Virol. 82(2), 966–973 (2008).
  • Pietschmann T, Kaul A, Koutsoudakis G et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl Acad. Sci. USA 103(19), 7408–7413 (2006).
  • Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J. Immunol. 188(8), 3724–3733 (2012).
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010).
  • Spohn G, Bachmann MF. Exploiting viral properties for the rational design of modern vaccines. Expert Rev. Vaccines 7(1), 43–54 (2008).
  • Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol. 179(4), 2551–2555 (2007).
  • Baumert TF, Ito S, Wong DT, Liang TJ. Hepatitis C virus structural proteins assemble into virus like particles in insect cells. J. Virol. 72(5), 3827–3836 (1998).
  • Baumert TF, Vergalla J, Satoi J et al. Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology 117(6), 1397–1407 (1999).
  • Yu X, Qiao M, Atanasov I et al. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology 367(1), 126–134 (2007).
  • Kunkel M, Lorinczi M, Rijnbrand R, Lemon SM, Watowich SJ. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J. Virol. 75(5), 2119–2129 (2001).
  • Blanchard E, Hourioux C, Brand D et al. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J. Virol. 77(18), 10131–10138 (2003).
  • Badia-Martinez D, Peralta B, Andres G, Guerra M, Gil-Carton D, Abrescia NG. Three-dimensional visualization of forming hepatitis C virus-like particles by electron-tomography. Virology 430(2), 120–126 (2012).
  • Gastaminza P, Dryden KA, Boyd B et al. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J. Virol. 84(21), 10999–11009 (2010).
  • Triyatni M, Vergalla J, Davis AR, Hadlock KG, Foung SK, Liang TJ. Structural features of envelope proteins on hepatitis C virus-like particles as determined by anti-envelope monoclonal antibodies and CD81 binding. Virology 298(1), 124–132 (2002).
  • Triyatni M, Berger EA, Saunier B. A new model to produce infectious hepatitis C virus without the replication requirement. PLoS Pathog. 7(4), e1001333 (2011).
  • Matsuura Y, Harada S, Suzuki R et al. Expression of processed envelope protein of hepatitis C virus in mammalian and insect cells. J. Virol. 66(3), 1425–1431 (1992).
  • Luckow VA. Baculovirus systems for the expression of human gene products. Curr. Opin. Biotechnol. 4(5), 564–572 (1993).
  • Grollo L, Torresi J, Drummer H, Zeng W, Williamson N, Jackson DC. Exploiting information inherent in binding sites of virus-specific antibodies: design of an HCV vaccine candidate cross-reactive with multiple genotypes. Antivir. Ther. 11(8), 1005–1014 (2006).
  • Torresi J, Fischer A, Grollo L, Zeng W, Drummer H, Jackson DC. Induction of neutralizing antibody responses to hepatitis C virus with synthetic peptide constructs incorporating both antibody and T-helper epitopes. Immunol. Cell. Biol. 85(2), 169–173 (2007).
  • Torresi J, Stock OM, Fischer AE et al. A self-adjuvanting multiepitope immunogen that induces a broadly cross-reactive antibody to hepatitis C virus. Hepatology 45(4), 911–920 (2007).
  • Lechmann M, Murata K, Satoi J, Vergalla J, Baumert TF, Liang TJ. Hepatitis C virus-like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology 34(2), 417–423 (2001).
  • Murata K, Lechmann M, Qiao M, Gunji T, Alter HJ, Liang TJ. Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc. Natl Acad. Sci. USA 100(11), 6753–6758 (2003).
  • Barth H, Ulsenheimer A, Pape GR et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood 105(9), 3605–3614 (2005).
  • Qiao M, Murata K, Davis AR, Jeong SH, Liang TJ. Hepatitis C virus-like particles combined with novel adjuvant systems enhance virus-specific immune responses. Hepatology 37(1), 52–59 (2003).
  • Chua BY, Johnson D, Tan A et al. Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS ONE 7(10), e47492 (2012).
  • Jeong SH, Qiao M, Nascimbeni M et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J. Virol. 78(13), 6995–7003 (2004).
  • Elmowalid GA, Qiao M, Jeong SH et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc. Natl Acad. Sci. USA 104(20), 8427–8432 (2007).
  • Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6(3), 381–390 (2007).
  • Borisova G, Arya B, Dislers A et al. Hybrid hepatitis B virus nucleocapsid bearing an immunodominant region from hepatitis B virus surface antigen. J. Virol. 67(6), 3696–3701 (1993).
  • Clarke BE, Newton SE, Carroll AR et al. Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature 330(6146), 381–384 (1987).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366(9502), 2012–2018 (2005).
  • Hardy K, Stahl S, Kupper H. Production in B. subtilis of hepatitis B core antigen and a major antigen of foot and mouth disease virus. Nature 293(5832), 481–483 (1981).
  • Sominskaya I, Skrastina D, Dislers A et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clin. Vaccine Immunol. 17(6), 1027–1033 (2010).
  • Ulrich R, Nassal M, Meisel H, Kruger DH. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv. Virus Res. 50, 141–182 (1998).
  • Yoshikawa A, Tanaka T, Hoshi Y et al. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein. J. Virol. 67(10), 6064–6070 (1993).
  • Wu CL, Leu TS, Chang TT, Shiau AL. Hepatitis C virus core protein fused to hepatitis B virus core antigen for serological diagnosis of both hepatitis C and hepatitis B infections by ELISA. J. Med. Virol. 57(2), 104–110 (1999).
  • Mihailova M, Boos M, Petrovskis I et al. Recombinant virus-like particles as a carrier of B- and T-cell epitopes of hepatitis C virus (HCV). Vaccine 24(20), 4369–4377 (2006).
  • Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 5(3), 215–229 (2005).
  • Schodel F, Moriarty AM, Peterson DL et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 66(1), 106–114 (1992).
  • Patient R, Hourioux C, Vaudin P, Pages JC, Roingeard P. Chimeric hepatitis B and C viruses envelope proteins can form subviral particles: implications for the design of new vaccine strategies. N. Biotechnol. 25(4), 226–234 (2009).
  • Bruss V, Gerhardt E, Vieluf K, Wunderlich G. Functions of the large hepatitis B virus surface protein in viral particle morphogenesis. Intervirology 39(1–2), 23–31 (1996).
  • Netter HJ, Macnaughton TB, Woo WP, Tindle R, Gowans EJ. Antigenicity and immunogenicity of novel chimeric hepatitis B surface antigen particles with exposed hepatitis C virus epitopes. J. Virol. 75(5), 2130–2141 (2001).
  • Vietheer PT, Boo I, Drummer HE, Netter HJ. Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies. Antivir. Ther. 12(4), 477–487 (2007).
  • Beaumont E, Patient R, Hourioux C, Dimier-Poisson I, Roingeard P. Chimeric HBV–HCV envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology doi:10.1002/hep.26132 (2012) (Epub ahead of print).
  • Netter HJ, Woo WP, Tindle R, Macfarlan RI, Gowans EJ. Immunogenicity of recombinant HBsAg/HCV particles in mice pre-immunised with hepatitis B virus-specific vaccine. Vaccine 21(21–22), 2692–2697 (2003).
  • Canizares MC, Lomonossoff GP, Nicholson L. Development of cowpea mosaic virus-based vectors for the production of vaccines in plants. Expert Rev. Vaccines 4(5), 687–697 (2005).
  • Saini M, Vrati S. A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like particles induces virus-neutralizing antibodies and protects mice against lethal challenge. J. Virol. 77(6), 3487–3494 (2003).
  • Tremblay MH, Majeau N, Gagne ME et al. Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J. 273(1), 14–25 (2006).
  • Rioux G, Babin C, Majeau N, Leclerc D. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites. PLoS ONE 7(2), e31925 (2012).
  • Denis J, Majeau N, Acosta-Ramirez E et al. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology 363(1), 59–68 (2007).
  • Leclerc D, Beauseigle D, Denis J et al. Proteasome-independent major histocompatibility complex Class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells. J. Virol. 81(3), 1319–1326 (2007).
  • Sandrin V, Boson B, Salmon P et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100(3), 823–832 (2002).
  • Bartosch B, Dubuisson J, Cosset FL. Infectious hepatitis C virus pseudoparticles containing functional E1–E2 envelope protein complexes. J. Exp. Med. 197(5), 633–642 (2003).
  • Sandrin V, Boulanger P, Penin F, Granier C, Cosset FL, Bartosch B. Assembly of functional hepatitis C virus glycoproteins on infectious pseudoparticles occurs intracellularly and requires concomitant incorporation of E1 and E2 glycoproteins. J. Gen. Virol. 86(Pt 12), 3189–3199 (2005).
  • Bartosch B, Cosset FL. Studying HCV cell entry with HCV pseudoparticles (HCVpp). Methods Mol. Biol. 510, 279–293 (2009).
  • Bartosch B, Bukh J, Meunier JC et al. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc. Natl Acad. Sci. USA 100(24), 14199–14204 (2003).
  • Bonnafous P, Perrault M, Le Bihan O et al. Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads. J. Gen. Virol. 91(Pt 8), 1919–1930 (2010).
  • Garrone P, Fluckiger AC, Mangeot PE et al. A prime–boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. Sci. Transl. Med. 3(94), 94ra71 (2011).
  • Cocquerel L, Duvet S, Meunier JC et al. The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J. Virol. 73(4), 2641–2649 (1999).
  • Flint M, McKeating JA. The C-terminal region of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum. J. Gen. Virol. 80(Pt 8), 1943–1947 (1999).
  • Buonocore L, Blight KJ, Rice CM, Rose JK. Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J. Virol. 76(14), 6865–6872 (2002).
  • Lagging LM, Meyer K, Owens RJ, Ray R. Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J. Virol. 72(5), 3539–3546 (1998).
  • Matsuura Y, Tani H, Suzuki K et al. Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286(2), 263–275 (2001).
  • Huret C, Desjardins D, Miyalou M et al. Recombinant retrovirus-derived virus-like particle-based vaccines induce hepatitis C virus-specific cellular and neutralizing immune responses in mice. Vaccine doi:10.1016/j.vaccine.2012.05.025 (2012) (Epub ahead of print).
  • Kretzschmar E, Buonocore L, Schnell MJ, Rose JK. High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J. Virol. 71(8), 5982–5989 (1997).
  • Schnell MJ, Buonocore L, Kretzschmar E, Johnson E, Rose JK. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl Acad. Sci. USA 93(21), 11359–11365 (1996).
  • Fields BN, Hawkins K. Human infection with the virus of vesicular stomatitis during an epizootic. N. Engl. J. Med. 277(19), 989–994 (1967).
  • Johnson KM, Vogel JE, Peralta PH. Clinical and serological response to laboratory-acquired human infection by Indiana type vesicular stomatitis virus (VSV). Am. J. Trop. Med. Hyg. 15(2), 244–246 (1966).
  • Barber GN. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 17(4), 516–527 (2004).
  • McKenna PM, McGettigan JP, Pomerantz RJ, Dietzschold B, Schnell MJ. Recombinant rhabdoviruses as potential vaccines for HIV-1 and other diseases. Curr. HIV Res. 1(2), 229–237 (2003).
  • Ezelle HJ, Markovic D, Barber GN. Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector. J. Virol. 76(23), 12325–12334 (2002).
  • Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J. Virol. 80(14), 6993–7008 (2006).
  • Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292(2), 198–210 (2002).
  • Appel N, Zayas M, Miller S et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 4(3), e1000035 (2008).
  • Masaki T, Suzuki R, Murakami K et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J. Virol. 82(16), 7964–7976 (2008).
  • Gouklani H, Bull RA, Beyer C et al. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis. J. Virol. 86(9), 5080–5088 (2012).
  • Kim M, Ha Y, Park HJ. Structural requirements for assembly and homotypic interactions of the hepatitis C virus core protein. Virus Res. 122(1–2), 137–143 (2006).
  • Duenas-Carrera S, Vina A, Martinez R et al. Immunization with a DNA vaccine encoding the hepatitis-C-virus structural antigens elicits a specific immune response against the capsid and envelope proteins in rabbits and Macaca irus (crab-eating macaque monkeys). Biotechnol. Appl. Biochem. 39(Pt 2), 249–255 (2004).
  • Desjardins D, Huret C, Dalba C et al. Recombinant retrovirus-like particle forming DNA vaccines in prime–boost immunization and their use for hepatitis C virus vaccine development. J. Gene Med. 11(4), 313–325 (2009).
  • Bellier B, Dalba C, Clerc B et al. DNA vaccines encoding retrovirus-based virus-like particles induce efficient immune responses without adjuvant. Vaccine 24(14), 2643–2655 (2006).
  • Bellier B, Huret C, Miyalou M et al. DNA vaccines expressing retrovirus-like particles are efficient immunogens to induce neutralizing antibodies. Vaccine 27(42), 5772–5780 (2009).
  • Diepolder HM, Gerlach JT, Zachoval R et al. Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection. J. Virol. 71(8), 6011–6019 (1997).
  • Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 97(10), 3171–3176 (2001).
  • Sarobe P, Lasarte JJ, Zabaleta A et al. Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J. Virol. 77(20), 10862–10871 (2003).
  • Meylan E, Curran J, Hofmann K et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062), 1167–1172 (2005).
  • Zimmermann M, Flechsig C, La Monica N, Tripodi M, Adler G, Dikopoulos N. Hepatitis C virus core protein impairs in vitro priming of specific T cell responses by dendritic cells and hepatocytes. J. Hepatol. 48(1), 51–60 (2008).
  • Buonaguro FM, Tornesello ML, Buonaguro L. New adjuvants in evolving vaccine strategies. Expert Opin. Biol. Ther. 11(7), 827–832 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.