1,184
Views
100
CrossRef citations to date
0
Altmetric
Review

Immunological assessment of influenza vaccines and immune correlates of protection

&
Pages 519-536 | Published online: 09 Jan 2014

References

  • Barr IG, McCauley J, Cox N et al. Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009-2010 Northern Hemisphere season. Vaccine 28(5), 1156–1167 (2010).
  • Fiore AE, Bridges CB, Cox NJ. Seasonal influenza vaccines. Curr. Top. Microbiol. Immunol. 333, 43–82 (2009).
  • Johansen K, Nicoll A, Ciancio BC, Kramarz P. Pandemic influenza A(H1N1) 2009 vaccines in the European Union. Euro Surveill. 14(41), 19361 (2009).
  • Calcagnile S, Zuccotti GV. The virosomal adjuvanted influenza vaccine. Expert Opin. Biol. Ther. 10(2), 191–200 (2010).
  • Sullivan SJ, Jacobson R, Poland GA. Advances in the vaccination of the elderly against influenza: role of a high-dose vaccine. Expert Rev. Vaccines 9(10), 1127–1133 (2010).
  • Traynor K. First quadrivalent flu vaccine approved. AJHP 69(7), 538 (2012).
  • Stephenson I, Hayden F, Osterhaus A et al. Report of the fourth meeting on ‘Influenza vaccines that induce broad spectrum and long-lasting immune responses’, World Health Organization and Wellcome Trust, London, United Kingdom, 9–10 November 2009. Vaccine 28(23), 3875–3882 (2010).
  • Gilbert SC. Advances in the development of universal influenza vaccines. Influenza Other Respi. Viruses doi:10.1111/irv.12013 (2012) (Epub ahead of print).
  • Partridge J, Kieny MP; World Health Organization H1N1 influenza vaccine Task Force. Global production of seasonal and pandemic (H1N1) influenza vaccines in 2009-2010 and comparison with previous estimates and global action plan targets. Vaccine 28(30), 4709–4712 (2010).
  • Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 54(11), 1615–1617 (2012).
  • Ohmit SE, Petrie JG, Cross RT, Johnson E, Monto AS. Influenza hemagglutination-inhibition antibody titer as a correlate of vaccine-induced protection. J. Infect. Dis. 204(12), 1879–1885 (2011).
  • Belshe RB, Gruber WC, Mendelman PM et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J. Infect. Dis. 181(3), 1133–1137 (2000).
  • Voordouw AC, Beyer WE, Smith DJ, Sturkenboom MC, Stricker BH. Evaluation of serological trials submitted for annual re-licensure of influenza vaccines to regulatory authorities between 1992 and 2002. Vaccine 28(2), 392–397 (2009).
  • Kreijtz JH, Fouchier RA, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res. 162(1–2), 19–30 (2011).
  • Potter CW, Oxford JS. Determinants of immunity to influenza infection in man. Br. Med. Bull. 35(1), 69–75 (1979).
  • Meiklejohn G, Kempe CH, Thalman WG, Lennette EH. Evaluation of monovalent influenza vaccines. II. Observations during an influenza a-prime epidemic. Am. J. Hyg. 55(1), 12–21 (1952).
  • Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. (Lond.) 70(4), 767–777 (1972).
  • de Jong JC, Palache AM, Beyer WE, Rimmelzwaan GF, Boon AC, Osterhaus AD. Haemagglutination-inhibiting antibody to influenza virus. Dev. Biol. (Basel) 115, 63–73 (2003).
  • Coudeville L, Bailleux F, Riche B, Megas F, Andre P, Ecochard R. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model. BMC Med. Res. Methodol. 10, 18 (2010).
  • Petrie JG, Ohmit SE, Johnson E, Cross RT, Monto AS. Efficacy studies of influenza vaccines: effect of end points used and characteristics of vaccine failures. J. Infect. Dis. 203(9), 1309–1315 (2011).
  • Black S, Nicolay U, Vesikari T et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J. 30(12), 1081–1085 (2011).
  • Ekiert DC, Bhabha G, Elsliger MA et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924), 246–251 (2009).
  • Ekiert DC, Friesen RH, Bhabha G et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333(6044), 843–850 (2011).
  • Sui J, Hwang WC, Perez S et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16(3), 265–273 (2009).
  • Corti D, Voss J, Gamblin SJ et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044), 850–856 (2011).
  • Steel J, Lowen AC, Wang TT et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1(1), pii: e00018-10 (2010).
  • Bommakanti G, Citron MP, Hepler RW et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl Acad. Sci. USA 107(31), 13701–13706 (2010).
  • Terajima M, Cruz J, Co MD et al. Complement-dependent lysis of influenza a virus-infected cells by broadly cross-reactive human monoclonal antibodies. J. Virol. 85(24), 13463–13467 (2011).
  • Palese P, Tobita K, Ueda M, Compans RW. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61(2), 397–410 (1974).
  • Kilbourne ED, Laver WG, Schulman JL, Webster RG. Antiviral activity of antiserum specific for an influenza virus neuraminidase. J. Virol. 2(4), 281–288 (1968).
  • Compans RW, Dimmock NJ, Meier-Ewert H. Effect of antibody to neuraminidase on the maturation and hemagglutinating activity of an influenza A2 virus. J. Virol. 4(4), 528–534 (1969).
  • Murphy BR, Kasel JA, Chanock RM. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 286(25), 1329–1332 (1972).
  • Couch RB, Kasel JA, Gerin JL, Schulman JL, Kilbourne ED. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 129(4), 411–420 (1974).
  • Ogra PL, Chow T, Beutner KR et al. Clinical and immunologic evaluation of neuraminidase-specific influenza A virus vaccine in humans. J. Infect. Dis. 135(4), 499–506 (1977).
  • Beutner KR, Chow T, Rubi E, Strussenberg J, Clement J, Ogra PL. Evaluation of a neuraminidase-specific influenza A virus vaccine in children: antibody responses and effects on two successive outbreaks of natural infection. J. Infect. Dis. 140(6), 844–850 (1979).
  • Clements ML, Betts RF, Tierney EL, Murphy BR. Serum and nasal wash antibodies associated with resistance to experimental challenge with influenza A wild-type virus. J. Clin. Microbiol. 24(1), 157–160 (1986).
  • Monto AS, Kendal AP. Effect of neuraminidase antibody on Hong Kong influenza. Lancet 1(7804), 623–625 (1973).
  • Mozdzanowska K, Maiese K, Furchner M, Gerhard W. Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology 254(1), 138–146 (1999).
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5(10), 1157–1163 (1999).
  • Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J. Virol. 64(3), 1375–1377 (1990).
  • Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 172(9), 5598–5605 (2004).
  • Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J. Gen. Virol. 74 (Pt 1), 143–146 (1993).
  • Feng J, Zhang M, Mozdzanowska K et al. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J. 3, 102 (2006).
  • Beerli RR, Bauer M, Schmitz N et al. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against influenza A M2 protein. Virol. J. 6, 224 (2009).
  • Grandea AG 3rd, Olsen OA, Cox TC et al. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc. Natl Acad. Sci. USA 107(28), 12658–12663 (2010).
  • Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerging Infect. Dis. 12(4), 569–574 (2006).
  • Askonas BA, McMichael AJ, Webster RG. The immune response to influenza viruses and the problem of protection against infection. In: Basic and Applied Influenza Research. Beare AS (Ed.). CRC Press, FL, USA, 159–188 (1982).
  • Carragher DM, Kaminski DA, Moquin A, Hartson L, Randall TD. A novel role for non-neutralizing antibodies against nucleoprotein in facilitating resistance to influenza virus. J. Immunol. 181(6), 4168–4176 (2008).
  • Khurana S, Suguitan AL Jr, Rivera Y et al. Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med. 6(4), e1000049 (2009).
  • Zamarin D, Ortigoza MB, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol. 80(16), 7976–7983 (2006).
  • Brandtzaeg P. Role of mucosal immunity in influenza. Dev. Biol. (Basel) 115, 39–48 (2003).
  • Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 69(2), 1339–1343 (1995).
  • Wagner DK, Clements ML, Reimer CB, Snyder M, Nelson DL, Murphy BR. Analysis of immunoglobulin G antibody responses after administration of live and inactivated influenza A vaccine indicates that nasal wash immunoglobulin G is a transudate from serum. J. Clin. Microbiol. 25(3), 559–562 (1987).
  • Beyer WE, Palache AM, de Jong JC, Osterhaus AD. Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy. A meta-analysis. Vaccine 20(9–10), 1340–1353 (2002).
  • Mbawuike IN, Pacheco S, Acuna CL, Switzer KC, Zhang Y, Harriman GR. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol. 162(5), 2530–2537 (1999).
  • Asahi Y, Yoshikawa T, Watanabe I et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J. Immunol. 168(6), 2930–2938 (2002).
  • Renegar KB, Small PA Jr, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173(3), 1978–1986 (2004).
  • Epstein SL, Lo CY, Misplon JA et al. Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice. J. Immunol. 158(3), 1222–1230 (1997).
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12(8), 557–569 (2012).
  • Medina MA, Couturier J, Feske ML et al. Granzyme B- and Fas ligand-mediated cytotoxic function induced by mitogenic CD28 stimulation of human memory CD4+ T cells. J. Leukoc. Biol. 91(5), 759–771 (2012).
  • Aslan N, Yurdaydin C, Wiegand J et al. Cytotoxic CD4 T cells in viral hepatitis. J. Viral Hepat. 13(8), 505–514 (2006).
  • Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 177(5), 2888–2898 (2006).
  • Bourgault I, Gomez A, Gomard E, Picard F, Levy JP, Gomrad E. A virus-specific CD4+ cell-mediated cytolytic activity revealed by CD8+ cell elimination regularly develops in uncloned human antiviral cell lines. J. Immunol. 142(1), 252–256 (1989).
  • Askonas BA, Taylor PM, Esquivel F. Cytotoxic T cells in influenza infection. Ann. N. Y. Acad. Sci. 532, 230–237 (1988).
  • Gotch F, McMichael A, Smith G, Moss B. Identification of viral molecules recognized by influenza-specific human cytotoxic T lymphocytes. J. Exp. Med. 165(2), 408–416 (1987).
  • Kees U, Krammer PH. Most influenza A virus-specific memory cytotoxic T lymphocytes react with antigenic epitopes associated with internal virus determinants. J. Exp. Med. 159(2), 365–377 (1984).
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309(1), 13–17 (1983).
  • Zweerink HJ, Courtneidge SA, Skehel JJ, Crumpton MJ, Askonas BA. Cytotoxic T cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature 267(5609), 354–356 (1977).
  • Crowe BA, Brühl P, Gerencer M et al. Evaluation of the cellular immune responses induced by a non-adjuvanted inactivated whole virus A/H5N1/VN/1203 pandemic influenza vaccine in humans. Vaccine 29(2), 166–173 (2010).
  • Moris P, van der Most R, Leroux-Roels I et al. H5N1 influenza vaccine formulated with AS03 A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J. Clin. Immunol. 31(3), 443–454 (2011).
  • Galli G, Medini D, Borgogni E et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc. Natl Acad. Sci. USA 106(10), 3877–3882 (2009).
  • Wilkinson TM, Li CK, Chui CS et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18(2), 274–280 (2012).
  • McElhaney JE. Influenza vaccine responses in older adults. Ageing Res. Rev. 10(3), 379–388 (2011).
  • Reber AJ, Chirkova T, Kim JH et al. Immunosenescence and challenges of vaccination against influenza in the aging population. Aging Dis. 3(1), 68–90 (2012).
  • Bodewes R, Fraaij PL, Osterhaus AD, Rimmelzwaan GF. Pediatric influenza vaccination: understanding the T-cell response. Expert Rev. Vaccines 11(8), 963–971 (2012).
  • PrabhuDas M, Adkins B, Gans H et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12(3), 189–194 (2011).
  • Hodgins DC, Shewen PE. Vaccination of neonates: problem and issues. Vaccine 30(9), 1541–1559 (2012).
  • McElhaney JE, Ewen C, Zhou X et al. Granzyme B: Correlates with protection and enhanced CTL response to influenza vaccination in older adults. Vaccine 27(18), 2418–2425 (2009).
  • McElhaney JE, Xie D, Hager WD et al. T cell responses are better correlates of vaccine protection in the elderly. J. Immunol. 176(10), 6333–6339 (2006).
  • Forrest BD, Pride MW, Dunning AJ et al. Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children. Clin. Vaccine Immunol. 15(7), 1042–1053 (2008).
  • Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin. Microbiol. Rev. 22(2), 370–385, Table of Contents (2009).
  • Poland GA, Ovsyannikova IG, Jacobson RM. Personalized vaccines: the emerging field of vaccinomics. Expert Opin. Biol. Ther. 8(11), 1659–1667 (2008).
  • Klein J, Sato A. The HLA system. First of two parts. N. Engl. J. Med. 343(10), 702–709 (2000).
  • Liu WM, Nahar TE, Jacobi RH et al. Impaired production of TNF-a by dendritic cells of older adults leads to a lower CD8+ T cell response against influenza. Vaccine 30(9), 1659–1666 (2012).
  • Tu W, Mao H, Zheng J et al. Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J. Virol. 84(13), 6527–6535 (2010).
  • Prevost-Blondel A, Lengagne R, Letourneur F, Pannetier C, Gomard E, Guillet JG. In vivo longitudinal analysis of a dominant TCR repertoire selected in human response to influenza virus. Virology 233(1), 93–104 (1997).
  • Anders EM, Peppard PM, Burns WH, White DO. In vitro antibody response to influenza virus. I. T cell dependence of secondary response to hemagglutinin. J. Immunol. 123(3), 1356–1361 (1979).
  • Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. Vaccine 30(12), 2146–2152 (2012).
  • Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 22(15–16), 1914–1920 (2004).
  • Jacobson RM, Poland GA, Vierkant RA et al. The association of class I HLA alleles and antibody levels after a single dose of measles vaccine. Hum. Immunol. 64(1), 103–109 (2003).
  • Jacobson RM, Ovsyannikova IG, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen associations with humoral and cellular immunity following a second dose of measles-containing vaccine: persistence, dampening, and extinction of associations found after a first dose. Vaccine 29(45), 7982–7991 (2011).
  • Poland GA, Ovsyannikova IG, Jacobson RM et al. Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine 20(3–4), 430–438 (2001).
  • Desombere I, Willems A, Leroux-Roels G. Response to hepatitis B vaccine: multiple HLA genes are involved. Tissue Antigens 51(6), 593–604 (1998).
  • Gelder CM, Lambkin R, Hart KW et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J. Infect. Dis. 185(1), 114–117 (2002).
  • Katz JM, Hancock K, Xu X. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev. Anti. Infect. Ther. 9(6), 669–683 (2011).
  • Nobusawa E, Ishihara H, Morishita T, Sato K, Nakajima K. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology 278(2), 587–596 (2000).
  • Morishita T, Nobusawa E, Nakajima K, Nakajima S. Studies on the molecular basis for loss of the ability of recent influenza A (H1N1) virus strains to agglutinate chicken erythrocytes. J. Gen. Virol. 77 (Part 10), 2499–2506 (1996).
  • Stephenson I, Wood JM, Nicholson KG, Zambon MC. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J. Med. Virol. 70(3), 391–398 (2003).
  • Stephenson I, Wood JM, Nicholson KG, Charlett A, Zambon MC. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/Duck/Singapore/97 vaccine. Virus Res. 103(1–2), 91–95 (2004).
  • Meijer A, Bosman A, van de Kamp EE, Wilbrink B, Du Ry van Beest Holle M, Koopmans M. Measurement of antibodies to avian influenza virus A(H7N7) in humans by hemagglutination inhibition test. J. Virol. Methods 132(1–2), 113–120 (2006).
  • Jia N, Wang SX, Liu YX et al. Increased sensitivity for detecting avian influenza-specific antibodies by a modified hemagglutination inhibition assay using horse erythrocytes. J. Virol. Methods 153(1), 43–48 (2008).
  • Zambon M. Laboratory diagnosis of influenza. In: Textbook of Influenza. Nicholson KG, Webster R, Hay A (Eds). Wiley-Blackwell, Oxford, UK, 291–313 (1998).
  • Monto AS, Maassab HF. Ether treatment of type B influenza virus antigen for the hemagglutination inhibition test. J. Clin. Microbiol. 13(1), 54–57 (1981).
  • Beyer WE, Palache AM, Sprenger MJ et al. Effects of repeated annual influenza vaccination on vaccine sero-response in young and elderly adults. Vaccine 14(14), 1331–1339 (1996).
  • Webster RG, Kasel JA, Couch RB, Laver WG. Influenza virus subunit vaccines. II. Immunogenicity and original antigenic sin in humans. J. Infect. Dis. 134(1), 48–58 (1976).
  • Schild GC, Pereira MS, Chakraverty P. Single-radial-hemolysis: a new method for the assay of antibody to influenza haemagglutinin. Applications for diagnosis and seroepidemiologic surveillance of influenza. Bull. World Health Organ. 52(1), 43–50 (1975).
  • Russell SM, McCahon D, Beare AS. A single radial haemolysis technique for the measurement of influenza antibody. J. Gen. Virol. 27(1), 1–10 (1975).
  • Delem A, Jovanovic D. Correlation between rate of infection and preexisting titer of serum antibody as determined by single radial hemolysis during and epidemic of influenza A/Victoria/3/75. J. Infect. Dis. 137(2), 194–196 (1978).
  • Goodeve AC, Jennings R, Potter CW. The use of the single radial haemolysis test for assessing antibody response and protective antibody levels in an influenza B vaccine study. J. Biol. Stand. 11(4), 289–296 (1983).
  • Al-Khayatt R, Jennings R, Potter CW. Interpretation of responses and protective levels of antibody against attenuated influenza A viruses using single radial haemolysis. J. Hyg. (Lond.) 93(2), 301–312 (1984).
  • Wood JM, Gaines-Das RE, Taylor J, Chakraverty P. Comparison of influenza serological techniques by international collaborative study. Vaccine 12(2), 167–174 (1994).
  • Groth N, Montomoli E, Gentile C, Manini I, Bugarini R, Podda A. Safety, tolerability and immunogenicity of a mammalian cell-culture-derived influenza vaccine: a sequential Phase I and Phase II clinical trial. Vaccine 27(5), 786–791 (2009).
  • Oxford JS, Yetts R, Schild GC. Quantitation and analysis of the specificity of post-immunization antibodies to influenza B viruses using single radial haemolysis. J. Hyg. (Lond.) 88(2), 325–333 (1982).
  • Van Damme P, Moiseeva A, Marichev I et al. Five years follow-up following two or three doses of a hepatitis B vaccine in adolescents aged 11-15 years: a randomised controlled study. BMC Infect. Dis. 10, 357 (2010).
  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).
  • Kida H, Yoden S, Kuwabara M, Yanagawa R. Interference with a conformational change in the haemagglutinin molecule of influenza virus by antibodies as a possible neutralization mechanism. Vaccine 3(3 Suppl), 219–222 (1985).
  • Stephenson I, Das RG, Wood JM, Katz JM. Comparison of neutralising antibody assays for detection of antibody to influenza A/H3N2 viruses: an international collaborative study. Vaccine 25(20), 4056–4063 (2007).
  • Harmon MW, Rota PA, Walls HH, Kendal AP. Antibody response in humans to influenza virus type B host-cell-derived variants after vaccination with standard (egg-derived) vaccine or natural infection. J. Clin. Microbiol. 26(2), 333–337 (1988).
  • Rowe T, Abernathy RA, Hu-Primmer J et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 37(4), 937–943 (1999).
  • Keitel WA, Atmar RL. Vaccines for pandemic influenza: summary of recent clinical trials. Curr. Top. Microbiol. Immunol. 333, 431–451 (2009).
  • Cox RJ, Madhun AS, Hauge S et al. A Phase I clinical trial of a PER.C6 cell grown influenza H7 virus vaccine. Vaccine 27(13), 1889–1897 (2009).
  • Corti D, Suguitan AL Jr, Pinna D et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120(5), 1663–1673 (2010).
  • Sandbulte MR, Jimenez GS, Boon AC, Smith LR, Treanor JJ, Webby RJ. Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLoS Med. 4(2), e59 (2007).
  • Johansson BE, Matthews JT, Kilbourne ED. Supplementation of conventional influenza A vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine 16(9-10), 1009–1015 (1998).
  • Feng J, Gulati U, Zhang X et al. Antibody quantity versus quality after influenza vaccination. Vaccine 27(45), 6358–6362 (2009).
  • Warren L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 234(8), 1971–1975 (1959).
  • Sandbulte MR, Gao J, Straight TM, Eichelberger MC. A miniaturized assay for influenza neuraminidase-inhibiting antibodies utilizing reverse genetics-derived antigens. Influenza Other Respi. Viruses 3(5), 233–240 (2009).
  • Lambré CR, Terzidis H, Greffard A, Webster RG. Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. J. Immunol. Methods 135(1–2), 49–57 (1990).
  • Cate TR, Rayford Y, Niño D et al. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine 28(9), 2076–2079 (2010).
  • Gavrilov V, Orekov T, Alabanza C et al. Influenza virus-like particles as a new tool for vaccine immunogenicity testing: validation of a neuraminidase neutralizing antibody assay. J. Virol. Methods 173(2), 364–373 (2011).
  • Powers DC, Kilbourne ED, Johansson BE. Neuraminidase-specific antibody responses to inactivated influenza virus vaccine in young and elderly adults. Clin. Diagn. Lab. Immunol. 3(5), 511–516 (1996).
  • Marcelin G, Bland HM, Negovetich NJ et al. Inactivated seasonal influenza vaccines increase serum antibodies to the neuraminidase of pandemic influenza A(H1N1) 2009 virus in an age-dependent manner. J. Infect. Dis. 202(11), 1634–1638 (2010).
  • Kang SM, Pushko P, Bright RA, Smith G, Compans RW. Influenza virus-like particles as pandemic vaccines. Curr. Top. Microbiol. Immunol. 333, 269–289 (2009).
  • El-Madhun AS, Cox RJ, Haaheim LR. The effect of age and natural priming on the IgG and IgA subclass responses after parenteral influenza vaccination. J. Infect. Dis. 180(4), 1356–1360 (1999).
  • Murphy BR, Phelan MA, Nelson DL et al. Hemagglutinin-specific enzyme-linked immunosorbent assay for antibodies to influenza A and B viruses. J. Clin. Microbiol. 13(3), 554–560 (1981).
  • Rothbarth PH, Groen J, Bohnen AM, de Groot R, Osterhaus AD. Influenza virus serology – a comparative study. J. Virol. Methods 78(1–2), 163–169 (1999).
  • Stepanova L, Naykhin A, Kolmskog C et al. The humoral response to live and inactivated influenza vaccines administered alone and in combination to young adults and elderly. J. Clin. Virol. 24(3), 193–201 (2002).
  • Greenbaum E, Engelhard D, Levy R, Schlezinger M, Morag A, Zakay-Rones Z. Mucosal (SIgA) and serum (IgG) immunologic responses in young adults following intranasal administration of one or two doses of inactivated, trivalent anti-influenza vaccine. Vaccine 22(20), 2566–2577 (2004).
  • Gulati U, Keitel WA, Air GM. Increased antibodies against unfolded viral antigens in the elderly after influenza vaccination. Influenza Other Respi. Viruses 1(4), 147–156 (2007).
  • Brokstad KA, Cox RJ, Major D, Wood JM, Haaheim LR. Cross-reaction but no avidity change of the serum antibody response after influenza vaccination. Vaccine 13(16), 1522–1528 (1995).
  • Snyder MH, Banks S, Murphy BR. Determination of antibody response to influenza virus surface glycoproteins by kinetic enzyme-linked immunosorbent assay. J. Clin. Microbiol. 26(10), 2034–2040 (1988).
  • Boyce TG, Gruber WC, Coleman-Dockery SD et al. Mucosal immune response to trivalent live attenuated intranasal influenza vaccine in children. Vaccine 18(1–2), 82–88 (1999).
  • Talaat KR, Karron RA, Callahan KA et al. A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a Phase I trial in healthy adults. Vaccine 27(28), 3744–3753 (2009).
  • Karron RA, Talaat K, Luke C et al. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine 27(36), 4953–4960 (2009).
  • Wang R, Song A, Levin J et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res. 80(2), 168–177 (2008).
  • Fu TM, Grimm KM, Citron MP et al. Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine 27(9), 1440–1447 (2009).
  • Fan J, Liang X, Horton MS et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22(23–24), 2993–3003 (2004).
  • Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 24(24), 5158–5168 (2006).
  • Tompkins SM, Zhao ZS, Lo CY et al. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerging Infect. Dis. 13(3), 426–435 (2007).
  • Mozdzanowska K, Zharikova D, Cudic M, Otvos L, Gerhard W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J. 4, 118 (2007).
  • Zhong W, He J, Tang X et al. Development and evaluation of an M2-293FT cell-based flow cytometric assay for quantification of antibody response to native form of matrix protein 2 of influenza A viruses. J. Immunol. Methods 369(1–2), 115–124 (2011).
  • El Bakkouri K, Descamps F, De Filette M et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 186(2), 1022–1031 (2011).
  • Xu K, Ling ZY, Sun L et al. Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus. Viral Immunol. 24(1), 45–56 (2011).
  • McCormick S, Shaler CR, Small CL et al. Control of pathogenic CD4 T cells and lethal immunopathology by signaling immunoadaptor DAP12 during influenza infection. J. Immunol. 187(8), 4280–4292 (2011).
  • Firbas C, Jilma B, Tauber E et al. Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects. Vaccine 24(20), 4343–4353 (2006).
  • Samdal HH, Bakke H, Oftung F et al. A non-living nasal influenza vaccine can induce major humoral and cellular immune responses in humans without the need for adjuvants. Hum. Vaccin. 1(2), 85–90 (2005).
  • Mayer S, Scheibenbogen C, Lee KH et al. A sensitive proliferation assay to determine the specific T cell response against HLA-A2.1-binding peptides. J. Immunol. Methods 197(1–2), 131–137 (1996).
  • Hoft DF, Babusis E, Worku S et al. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J. Infect. Dis. 204(6), 845–853 (2011).
  • Co MD, Orphin L, Cruz J et al. In vitro evidence that commercial influenza vaccines are not similar in their ability to activate human T cell responses. Vaccine 27(2), 319–327 (2009).
  • He L, Hakimi J, Salha D, Miron I, Dunn P, Radvanyi L. A sensitive flow cytometry-based cytotoxic T-lymphocyte assay through detection of cleaved caspase 3 in target cells. J. Immunol. Methods 304(1–2), 43–59 (2005).
  • Lambe T, Spencer AJ, Mullarkey CE et al. T-cell responses in children to internal influenza antigens, 1 year after immunization with pandemic H1N1 influenza vaccine, and response to revaccination with seasonal trivalent-inactivated influenza vaccine. Pediatr. Infect. Dis. J. 31(6), e86–e91 (2012).
  • Air GM, Feng J, Chen T, Joachims ML, James JA, Thompson LF. Individual antibody and T cell responses to vaccination and infection with the 2009 pandemic swine-origin H1N1 influenza virus. J. Clin. Immunol. 31(5), 900–912 (2011).
  • Kobie JJ, Zheng B, Bryk P et al. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. Arthritis Res. Ther. 13(6), R209 (2011).
  • Oftung F, Naess LM, Wetzler LM et al. Antigen-specific T-cell responses in humans after intranasal immunization with a meningococcal serogroup B outer membrane vesicle vaccine. Infect. Immun. 67(2), 921–927 (1999).
  • Hurwitz JL, Hackett CJ, McAndrew EC, Gerhard W. Murine TH response to influenza virus: recognition of hemagglutinin, neuraminidase, matrix, and nucleoproteins. J. Immunol. 134(3), 1994–1998 (1985).
  • McGill J, Legge KL. Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection. J. Immunol. 183(7), 4177–4181 (2009).
  • Lawrence CW, Ream RM, Braciale TJ. Frequency, specificity, and sites of expansion of CD8+ T cells during primary pulmonary influenza virus infection. J. Immunol. 174(9), 5332–5340 (2005).
  • Flynn KJ, Riberdy JM, Christensen JP, Altman JD, Doherty PC. In vivo proliferation of naïve and memory influenza-specific CD8(+) T cells. Proc. Natl Acad. Sci. USA 96(15), 8597–8602 (1999).
  • Cellerai C, Perreau M, Rozot V, Enders FB, Pantaleo G, Harari A. Proliferation capacity and cytotoxic activity are mediated by functionally and phenotypically distinct virus-specific CD8 T cells defined by interleukin-7R{alpha} (CD127) and perforin expression. J. Virol. 84(8), 3868–3878 (2010).
  • Song H, Wittman V, Byers A et al. In vitro stimulation of human influenza-specific CD8+ T cells by dendritic cells pulsed with an influenza virus-like particle (VLP) vaccine. Vaccine 28(34), 5524–5532 (2010).
  • Mintern JD, Bedoui S, Davey GM, Moffat JM, Doherty PC, Turner SJ. Transience of MHC class I-restricted antigen presentation after influenza A virus infection. Proc. Natl Acad. Sci. USA 106(16), 6724–6729 (2009).
  • Berkhoff EG, Geelhoed-Mieras MM, Verschuren EJ et al. The loss of immunodominant epitopes affects interferon-gamma production and lytic activity of the human influenza virus-specific cytotoxic T lymphocyte response in vitro. Clin. Exp. Immunol. 148(2), 296–306 (2007).
  • van Baalen CA, Kwa D, Verschuren EJ et al. Fluorescent antigen-transfected target cell cytotoxic T lymphocyte assay for ex vivo detection of antigen-specific cell-mediated cytotoxicity. J. Infect. Dis. 192(7), 1183–1190 (2005).
  • Chen K, Chen L, Zhao P et al. FL-CTL assay: fluorolysometric determination of cell-mediated cytotoxicity using green fluorescent protein and red fluorescent protein expressing target cells. J. Immunol. Methods 300(1–2), 100–114 (2005).
  • Mersich SE, Baumeister EG, Riva D et al. Influenza circulating strains in Argentina exhibit differential induction of cytotoxicity and caspase-3 in vitro. J. Clin. Virol. 31(2), 134–139 (2004).
  • Watanabe W, Sudo K, Asawa S, Konno K, Yokota T, Shigeta S. Use of lactate dehydrogenase to evaluate the anti-viral activity against influenza A virus. J. Virol. Methods 51(2–3), 185–191 (1995).
  • van Baalen CA, Gruters RA, Berkhoff EG, Osterhaus AD, Rimmelzwaan GF. FATT-CTL assay for detection of antigen-specific cell-mediated cytotoxicity. Cytometry A 73(11), 1058–1065 (2008).
  • Miller RA. Quantitation of functional T cells by limiting dilution. Curr. Protoc. Immunol. Chapter 3, Unit 3.15 (2001).
  • Scheibenbogen C, Romero P, Rivoltini L et al. Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISpot assay and chromium-release assay: a four-centre comparative trial. J. Immunol. Methods 244(1–2), 81–89 (2000).
  • Frasca D, Diaz A, Romero M et al. Unique biomarkers for B-cell function predict the serum response to pandemic H1N1 influenza vaccine. Int. Immunol. 24(3), 175–182 (2012).
  • Zeman AM, Holmes TH, Stamatis S et al. Humoral and cellular immune responses in children given annual immunization with trivalent inactivated influenza vaccine. Pediatr. Infect. Dis. J. 26(2), 107–115 (2007).
  • Bolton DL, Roederer M. Flow cytometry and the future of vaccine development. Expert Rev. Vaccines 8(6), 779–789 (2009).
  • Roederer M, Brenchley JM, Betts MR, De Rosa SC. Flow cytometric analysis of vaccine responses: how many colors are enough? Clin. Immunol. 110(3), 199–205 (2004).
  • Stephenson I, Heath A, Major D et al. Reproducibility of serologic assays for influenza virus A (H5N1). Emerging Infect. Dis. 15(8), 1252–1259 (2009).
  • Wood JM, Major D, Heath A et al. Reproducibility of serology assays for pandemic influenza H1N1: collaborative study to evaluate a candidate WHO International Standard. Vaccine 30(2), 210–217 (2012).
  • Girard MP, Katz J, Pervikov Y, Palkonyay L, Kieny MP. Report of the 6th meeting on the evaluation of pandemic influenza vaccines in clinical trials World Health Organization, Geneva, Switzerland, 17–18 February 2010. Vaccine 28(42), 6811–6820 (2010).
  • Wagner R, Göpfert C, Hammann J et al. Enhancing the reproducibility of serological methods used to evaluate immunogenicity of pandemic H1N1 influenza vaccines-an effective EU regulatory approach. Vaccine 30(27), 4113–4122 (2012).
  • Noah DL, Hill H, Hines D, White EL, Wolff MC. Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure. Clin. Vaccine Immunol. 16(4), 558–566 (2009).
  • Van Kerkhove MD, Broberg E, Engelhardt OG, Wood J, Nicoll A; The CONSISE steering committee. The consortium for the standardization of influenza seroepidemiology (CONSISE): a global partnership to standardize influenza seroepidemiology and develop influenza investigation protocols to inform public health policy. Influenza Other Respi. Viruses doi:10.1111/irv.12068 (2012) (Epub ahead of print).
  • Friede M, Palkonyay L, Alfonso C et al. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer. Vaccine 29(Suppl. 1), A2–A7 (2011).
  • Haaheim LR, Katz JM. Immune correlates of protection against influenza: challenges for licensure of seasonal and pandemic influenza vaccines, Miami, FL, USA, March 1–3, 2010. Influenza Other Respi. Viruses 5(4), 288–295 (2011).
  • Schotsaert M, Saelens X, Leroux-Roels G. Influenza vaccines: T-cell responses deserve more attention. Expert Rev. Vaccines 11(8), 949–962 (2012).
  • Eichelberger M, Golding H, Hess M et al. FDA/NIH/WHO public workshop on immune correlates of protection against influenza A viruses in support of pandemic vaccine development, Bethesda, Maryland, US, December 10-11, 2007. Vaccine 26(34), 4299–4303 (2008).
  • Hashimoto G, Wright PF, Karzon DT. Antibody-dependent cell-mediated cytotoxicity against influenza virus-infected cells. J. Infect. Dis. 148(5), 785–794 (1983).
  • Jegaskanda S, Job ER, Kramski M et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190(4), 1837–1848 (2013).
  • Lillie PJ, Berthoud TK, Powell TJ et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin. Infect. Dis. 55(1), 19–25 (2012).
  • Gijzen K, Liu WM, Visontai I et al. Standardization and validation of assays determining cellular immune responses against influenza. Vaccine 28(19), 3416–3422 (2010).
  • Cox JH, Ferrari G, Kalams SA, Lopaczynski W, Oden N, D’souza MP; ELISpot Collaborative Study Group. Results of an ELISpot proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res. Hum. Retroviruses 21(1), 68–81 (2005).
  • Bucasas KL, Franco LM, Shaw CA et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J. Infect. Dis. 203(7), 921–929 (2011).
  • Nakaya HI, Wrammert J, Lee EK et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12(8), 786–795 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.