478
Views
34
CrossRef citations to date
0
Altmetric
Review

Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease

, &
Pages 169-181 | Published online: 09 Jan 2014

References

  • Estes M. Rotavirus and their replication. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA (2001).
  • Riepenhoff-Talty M, Schaekel K, Clark HF et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr. Res. 33(4 Pt 1), 394–399 (1993).
  • Woode GN, Bridger JC. Rotavirus in calves. Vet. Rec. 99(16), 322–321 (1976).
  • Guerin-Danan C, Meslin JC, Lambre F et al. Development of a heterologous model in germfree suckling rats for studies of rotavirus diarrhea. J. Virol. 72(11), 9298–9302 (1998).
  • Burns JW, Krishnaney AA, Vo PT, Rouse RV, Anderson LJ, Greenberg HB. Analyses of homologous rotavirus infection in the mouse model. Virology 207(1), 143–153 (1995).
  • Bishop RF, Hewstone AS, Davidson GP, Townley RR, Holmes IH, Ruck BJ. An epidemic of diarrhoea in human neonates involving a reovirus-like agent and ‘enteropathogenic’ serotypes of Escherichia coli. J. Clin. Pathol. 29(1), 46–49 (1976).
  • Estes MK, Kapikian AZ. Rotaviruses. In: Fields Virology. Knipe DM, Howley PM (Eds). Wolters Kluwer-Lippincott Williams and Wilkins, PA, USA, 1917–1974 (2007).
  • Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr. Opin. Virol. 2(4), 426–433 (2012).
  • Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD; WHO-coordinated Global Rotavirus Surveillance Network. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 12(2), 136–141 (2012).
  • Velázquez FR, Matson DO, Calva JJ et al. Rotavirus infections in infants as protection against subsequent infections. N. Engl. J. Med. 335(14), 1022–1028 (1996).
  • Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR et al.; Human Rotavirus Vaccine Study Group. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med. 354(1), 11–22 (2006).
  • Vesikari T, Matson DO, Dennehy P et al.; Rotavirus Efficacy and Safety Trial (REST) Study Team. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med. 354(1), 23–33 (2006).
  • Yen C, Tate JE, Patel MM et al. Rotavirus vaccines: update on global impact and future priorities. Hum. Vaccin. 7(12), 1282–1290 (2011).
  • Cortes JE, Curns AT, Tate JE et al. Rotavirus vaccine and health care utilization for diarrhea in U.S. children. N. Engl. J. Med. 365(12), 1108–1117 (2011).
  • Jiang V, Jiang B, Tate J, Parashar UD, Patel MM. Performance of rotavirus vaccines in developed and developing countries. Hum. Vaccin. 6(7), 532–542 (2010).
  • Jiang B, Patel M, Parashar U. Rotavirus vaccines for global use: what are the remaining issues and challenges? Hum. Vaccin. 6(5), 425–427 (2010).
  • Armah GE, Sow SO, Breiman RF et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet 376(9741), 606–614 (2010).
  • Madhi SA, Cunliffe NA, Steele D et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N. Engl. J. Med. 362(4), 289–298 (2010).
  • Zaman K, Dang DA, Victor JC et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet 376(9741), 615–623 (2010).
  • Rotavirus vaccines: an update. Wkly Epidemiol Rec. 84(50), 533–540 (2009).
  • Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136(6), 1939–1951 (2009).
  • Azevedo MS, Yuan L, Jeong KI et al. Viremia and nasal and rectal shedding of rotavirus in gnotobiotic pigs inoculated with Wa human rotavirus. J. Virol. 79(9), 5428–5436 (2005).
  • Blutt SE, Kirkwood CD, Parreño V et al. Rotavirus antigenaemia and viraemia: a common event? Lancet 362(9394), 1445–1449 (2003).
  • Tô TL, Ward LA, Yuan L, Saif LJ. Serum and intestinal isotype antibody responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J. Gen. Virol. 79 (Pt 11), 2661–2672 (1998).
  • Velázquez FR, Matson DO, Guerrero ML et al. Serum antibody as a marker of protection against natural rotavirus infection and disease. J. Infect. Dis. 182(6), 1602–1609 (2000).
  • Yuan L, Ward LA, Rosen BI, To TL, Saif LJ. Systematic and intestinal antibody-secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J. Virol. 70(5), 3075–3083 (1996).
  • Chiba S, Yokoyama T, Nakata S et al. Protective effect of naturally acquired homotypic and heterotypic rotavirus antibodies. Lancet 2(8504), 417–421 (1986).
  • Franco MA, Angel J, Greenberg HB. Immunity and correlates of protection for rotavirus vaccines. Vaccine 24(15), 2718–2731 (2006).
  • Angel J, Franco MA, Greenberg HB. Rotavirus immune responses and correlates of protection. Curr. Opin. Virol. 2(4), 419–425 (2012).
  • Intussusception among recipients of rotavirus vaccine-United States, 1998–1999. MMWR Morb Mortal Wkly Rep. 48(27), 577–581 (1999).
  • Murphy TV, Gargiullo PM, Massoudi MS et al.; Rotavirus Intussusception Investigation Team. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 344(8), 564–572 (2001).
  • Buttery JP, Danchin MH, Lee KJ et al.; PAEDS/APSU Study Group. Intussusception following rotavirus vaccine administration: post-marketing surveillance in the National Immunization Program in Australia. Vaccine 29(16), 3061–3066 (2011).
  • Patel NC, Hertel PM, Estes MK et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. N. Engl. J. Med. 362(4), 314–319 (2010).
  • Tate JE, Steele AD, Bines JE, Zuber PL, Parashar UD. Research priorities regarding rotavirus vaccine and intussusception: a meeting summary. Vaccine 30(Suppl. 1), A179–A184 (2012).
  • Gilliland SM, Forrest L, Carre H et al. Investigation of porcine circovirus contamination in human vaccines. Biologicals 40(4), 270–277 (2012).
  • Studer E, Bertoni G, Candrian U. Detection and characterization of pestivirus contaminations in human live viral vaccines. Biologicals 30(4), 289–296 (2002).
  • Conner ME, Crawford SE, Barone C et al. Rotavirus subunit vaccines. Arch. Virol. Suppl. 12, 199–206 (1996).
  • Madore HP, Estes MK, Zarley CD et al. Biochemical and immunologic comparison of virus-like particles for a rotavirus subunit vaccine. Vaccine 17(19), 2461–2471 (1999).
  • Crawford SE, Labbé M, Cohen J, Burroughs MH, Zhou YJ, Estes MK. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68(9), 5945–5952 (1994).
  • Labbé M, Charpilienne A, Crawford SE, Estes MK, Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65(6), 2946–2952 (1991).
  • Friess AE, Sinowatz F, Skolek-Winnisch R, Träutner W. The placenta of the pig. II. The ultrastructure of the areolae. Anat. Embryol. 163(1), 43–53 (1981).
  • Lala PK, Chatterjee-Hasrouni S, Kearns M, Montgomery B, Colavincenzo V. Immunobiology of the feto-maternal interface. Immunol. Rev. 75, 87–116 (1983).
  • Butler JE, Lemke CD, Weber P, Sinkora M, Lager KM. Antibody repertoire development in fetal and neonatal piglets: XIX. Undiversified B cells with hydrophobic HCDR3s preferentially proliferate in the porcine reproductive and respiratory syndrome. J. Immunol. 178(10), 6320–6331 (2007).
  • Saif LJ, Fernandez FM. Group A rotavirus veterinary vaccines. J. Infect. Dis. 174(Suppl. 1), S98–106 (1996).
  • Yuan L, Saif LJ. Induction of mucosal immune responses and protection against enteric viruses: rotavirus infection of gnotobiotic pigs as a model. Vet. Immunol. Immunopathol. 87(3–4), 147–160 (2002).
  • Hammerberg C, Schurig GG, Ochs DL. Immunodeficiency in young pigs. Am. J. Vet. Res. 50(6), 868–874 (1989).
  • Wagstrom EA, Yoon KJ, Zimmerman JJ. Immune components in porcine mammary secretions. Viral Immunol. 13(3), 383–397 (2000).
  • Butler JE, Wertz N, Sun J et al. Antibody repertoire development in fetal and neonatal pigs. VII. Characterization of the preimmune kappa light chain repertoire. J. Immunol. 173(11), 6794–6805 (2004).
  • Wyatt RG, James WD, Bohl EH et al. Human rotavirus type 2: cultivation in vitro. Science 207(4427), 189–191 (1980).
  • Ward LA, Rosen BI, Yuan L, Saif LJ. Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs. J. Gen. Virol. 77(Pt 7), 1431–1441 (1996).
  • Ciarlet M, Conner ME, Finegold MJ, Estes MK. Group A rotavirus infection and age-dependent diarrheal disease in rats: a new animal model to study the pathophysiology of rotavirus infection. J. Virol. 76(1), 41–57 (2002).
  • Butler JE, Sinkora M, Wertz N, Holtmeier W, Lemke CD. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet. Res. 37(3), 417–441 (2006).
  • Parel Y, Chizzolini C. CD4+ CD8+ double positive (DP) T cells in health and disease. Autoimmun. Rev. 3(3), 215–220 (2004).
  • Yuan L, Geyer A, Hodgins DC et al. Intranasal administration of 2/6-rotavirus-like particles with mutant Escherichia coli heat-labile toxin (LT-R192G) induces antibody-secreting cell responses but not protective immunity in gnotobiotic pigs. J. Virol. 74(19), 8843–8853 (2000).
  • Wu HY, Nikolova EB, Beagley KW, Russell MW. Induction of antibody-secreting cells and T-helper and memory cells in murine nasal lymphoid tissue. Immunology 88(4), 493–500 (1996).
  • Hu KF, Elvander M, Merza M, Akerblom L, Brandenburg A, Morein B. The immunostimulating complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody responses. Clin. Exp. Immunol. 113(2), 235–243 (1998).
  • Mowat AM, Donachie AM. ISCOMS – a novel strategy for mucosal immunization? Immunol. Today 12(11), 383–385 (1991).
  • Iosef C, Van Nguyen T, Jeong Ki et al. Systemic and intestinal antibody secreting cell responses and protection in gnotobiotic pigs immunized orally with attenuated Wa human rotavirus and Wa 2/6-rotavirus-like-particles associated with immunostimulating complexes. Vaccine 20(13–14), 1741–1753 (2002).
  • Nguyen TV, Iosef C, Jeong K et al. Protection and antibody responses to oral priming by attenuated human rotavirus followed by oral boosting with 2/6-rotavirus-like particles with immunostimulating complexes in gnotobiotic pigs. Vaccine 21(25–26), 4059–4070 (2003).
  • Yuan L, Iosef C, Azevedo MS et al. Protective immunity and antibody-secreting cell responses elicited by combined oral attenuated Wa human rotavirus and intranasal Wa 2/6-VLPs with mutant Escherichia coli heat-labile toxin in gnotobiotic pigs. J. Virol. 75(19), 9229–9238 (2001).
  • Azevedo MS, Gonzalez AM, Yuan L et al. An oral versus intranasal prime/boost regimen using attenuated human rotavirus or VP2 and VP6 virus-like particles with immunostimulating complexes influences protection and antibody-secreting cell responses to rotavirus in a neonatal gnotobiotic pig model. Clin. Vaccine Immunol. 17(3), 420–428 (2010).
  • Azevedo MS, Yuan L, Iosef C et al. Magnitude of serum and intestinal antibody responses induced by sequential replicating and nonreplicating rotavirus vaccines in gnotobiotic pigs and correlation with protection. Clin. Diagn. Lab. Immunol. 11(1), 12–20 (2004).
  • Milich DR, McLachlan A, Thornton GB, Hughes JL. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature 329(6139), 547–549 (1987).
  • Scherle PA, Gerhard W. Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc. Natl Acad. Sci. USA 85(12), 4446–4450 (1988).
  • González AM, Nguyen TV, Azevedo MS et al. Antibody responses to human rotavirus (HRV) in gnotobiotic pigs following a new prime/boost vaccine strategy using oral attenuated HRV priming and intranasal VP2/6 rotavirus-like particle (VLP) boosting with ISCOM. Clin. Exp. Immunol. 135(3), 361–372 (2004).
  • Brandtzaeg P, Halstensen TS, Kett K et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97(6), 1562–1584 (1989).
  • Franco MA, Greenberg HB. Immunity to rotavirus infection in mice. J. Infect. Dis. 179(Suppl. 3), S466–S469 (1999).
  • Jaimes MC, Rojas OL, González AM et al. Frequencies of virus-specific CD4(+) and CD8(+) T lymphocytes secreting gamma interferon after acute natural rotavirus infection in children and adults. J. Virol. 76(10), 4741–4749 (2002).
  • McNeal MM, VanCott JL, Choi AH et al. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT(R192G). J. Virol. 76(2), 560–568 (2002).
  • Offit PA, Hoffenberg EJ, Pia ES, Panackal PA, Hill NL. Rotavirus-specific helper T cell responses in newborns, infants, children, and adults. J. Infect. Dis. 165(6), 1107–1111 (1992).
  • Ward LA, Yuan L, Rosen BI, Tô TL, Saif LJ. Development of mucosal and systemic lymphoproliferative responses and protective immunity to human group A rotaviruses in a gnotobiotic pig model. Clin. Diagn. Lab. Immunol. 3(3), 342–350 (1996).
  • Yuan L, Wen K, Azevedo MS, Gonzalez AM, Zhang W, Saif LJ. Virus-specific intestinal IFN-gamma producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs. Vaccine 26(26), 3322–3331 (2008).
  • Kordasti S, Istrate C, Banasaz M et al. Rotavirus infection is not associated with small intestinal fluid secretion in the adult mouse. J. Virol. 80(22), 11355–11361 (2006).
  • O’Neal CM, Crawford SE, Estes MK, Conner ME. Rotavirus virus-like particles administered mucosally induce protective immunity. J. Virol. 71(11), 8707–8717 (1997).
  • Brandtzaeg P, Farstad IN, Haraldsen G. Regional specialization in the mucosal immune system: primed cells do not always home along the same track. Immunol. Today 20(6), 267–277 (1999).
  • Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, Conner ME, Estes MK. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21(25–26), 3885–3900 (2003).
  • Schwartz-Cornil I, Benureau Y, Greenberg H, Hendrickson BA, Cohen J. Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J. Virol. 76(16), 8110–8117 (2002).
  • Ciarlet M, Crawford SE, Barone C et al. Subunit rotavirus vaccine administered parenterally to rabbits induces active protective immunity. J. Virol. 72(11), 9233–9246 (1998).
  • Conner ME, Zarley CD, Hu B et al. Virus-like particles as a rotavirus subunit vaccine. J. Infect. Dis. 174(Suppl. 1), S88–S92 (1996).
  • Istrate C, Hinkula J, Charpilienne A et al. Parenteral administration of RF 8-2/6/7 rotavirus-like particles in a one-dose regimen induce protective immunity in mice. Vaccine 26(35), 4594–4601 (2008).
  • Parez N, Fourgeux C, Mohamed A et al. Rectal immunization with rotavirus virus-like particles induces systemic and mucosal humoral immune responses and protects mice against rotavirus infection. J. Virol. 80(4), 1752–1761 (2006).
  • Zhou H, Guo L, Wang M et al. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice. Virol. J. 8, 3 (2011).
  • Fromantin C, Jamot B, Cohen J, Piroth L, Pothier P, Kohli E. Rotavirus 2/6 virus-like particles administered intranasally in mice, with or without the mucosal adjuvants cholera toxin and Escherichia coli heat-labile toxin, induce a Th1/Th2-like immune response. J. Virol. 75(22), 11010–11016 (2001).
  • Chan J, Nirwati H, Triasih R et al. Maternal antibodies to rotavirus: could they interfere with live rotavirus vaccines in developing countries? Vaccine 29(6), 1242–1247 (2011).
  • Guyer RL, Koshland ME, Knopf PM. Immunoglobulin binding by mouse intestinal epithelial cell receptors. J. Immunol. 117(2), 587–593 (1976).
  • Ghetie V, Ward ES. FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol. Today 18(12), 592–598 (1997).
  • Nguyen TV, Yuan L, Azevedo MS et al. Low titer maternal antibodies can both enhance and suppress B cell responses to a combined live attenuated human rotavirus and VLP-ISCOM vaccine. Vaccine 24(13), 2302–2316 (2006).
  • Nguyen TV, Yuan L, Azevedo MS et al. High titers of circulating maternal antibodies suppress effector and memory B-cell responses induced by an attenuated rotavirus priming and rotavirus-like particle-immunostimulating complex boosting vaccine regimen. Clin. Vaccine Immunol. 13(4), 475–485 (2006).
  • Moon SS, Wang Y, Shane AL et al. Inhibitory effect of breast milk on infectivity of live oral rotavirus vaccines. Pediatr. Infect. Dis. J. 29(10), 919–923 (2010).
  • Coste A, Sirard JC, Johansen K, Cohen J, Kraehenbuhl JP. Nasal immunization of mice with virus-like particles protects offspring against rotavirus diarrhea. J. Virol. 74(19), 8966–8971 (2000).
  • Fernandez FM, Conner ME, Parwani AV et al. Isotype-specific antibody responses to rotavirus and virus proteins in cows inoculated with subunit vaccines composed of recombinant SA11 rotavirus core-like particles (CLP) or virus-like particles (VLP). Vaccine 14(14), 1303–1312 (1996).
  • Fernandez FM, Conner ME, Hodgins DC et al. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines. Vaccine 16(5), 507–516 (1998).
  • Kim Y, Nielsen PR, Hodgins D, Chang KO, Saif LJ. Lactogenic antibody responses in cows vaccinated with recombinant bovine rotavirus-like particles (VLPs) of two serotypes or inactivated bovine rotavirus vaccines. Vaccine 20(7-8), 1248–1258 (2002).
  • Hemming M, Vesikari T. Vaccine-derived human-bovine double reassortant rotavirus in infants with acute gastroenteritis. Pediatr. Infect. Dis. J. 31(9), 992–994 (2012).
  • Bucardo F, Rippinger CM, Svensson L, Patton JT. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect. Genet. Evol. 12(6), 1282–1294 (2012).
  • Patton JT. Rotavirus diversity and evolution in the post-vaccine world. Discov. Med. 13(68), 85–97 (2012).
  • Rotavirus vaccination coverage among infants aged 5 months – immunization information system sentinel sites, United States, June 2006-June 2009. MMWR Morb Mortal Wkly Rep. 59(17), 521–524 (2010).
  • Iturriza-Gómara M, Dallman T, Bányai K et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol. Infect. 139(6), 895–909 (2011).
  • Yuki Y, Kiyono H. New generation of mucosal adjuvants for the induction of protective immunity. Rev. Med. Virol. 13(5), 293–310 (2003).
  • O’Neal CM, Clements JD, Estes MK, Conner ME. Rotavirus 2/6 viruslike particles administered intranasally with cholera toxin, Escherichia coli heat-labile toxin (LT), and LT-R192G induce protection from rotavirus challenge. J. Virol. 72(4), 3390–3393 (1998).
  • Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan D, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol. Cell Biol. 82(6), 617–627 (2004).
  • Mutsch M, Zhou W, Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med. 350(9), 896–903 (2004).
  • Yamamoto S, Kiyono H, Yamamoto M et al. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc. Natl Acad. Sci. USA 94(10), 5267–5272 (1997).
  • Ryan ET, Crean TI, John M, Butterton JR, Clements JD, Calderwood SB. In vivo expression and immunoadjuvancy of a mutant of heat-labile enterotoxin of Escherichia coli in vaccine and vector strains of Vibrio cholerae. Infect. Immun. 67(4), 1694–1701 (1999).
  • Lewis DJ, Huo Z, Barnett S et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS ONE 4(9), e6999 (2009).
  • Podda A, Nencioni L, De Magistris MT et al. Metabolic, humoral, and cellular responses in adult volunteers immunized with the genetically inactivated pertussis toxin mutant PT-9K/129G. J. Exp. Med. 172(3), 861–868 (1990).
  • Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18(22), 2416–2425 (2000).
  • Proietti E, Bracci L, Puzelli S et al. Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J. Immunol. 169(1), 375–383 (2002).
  • Luft T, Pang KC, Thomas E et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. 161(4), 1947–1953 (1998).
  • Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347(6294), 669–671 (1990).
  • Lillard JW Jr, Boyaka PN, Hedrick JA, Zlotnik A, McGhee JR. Lymphotactin acts as an innate mucosal adjuvant. J. Immunol. 162(4), 1959–1965 (1999).
  • Boyaka PN, Marinaro M, Jackson RJ et al. Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity. J. Immunol. 166(4), 2283–2290 (2001).
  • Lovgren K, Morein B. The ISCOM: an antigen delivery system with built-in adjuvant. Mol. Immunol. 28(3), 285–286 (1991).
  • Glück U, Gebbers JO, Glück R. Phase 1 evaluation of intranasal virosomal influenza vaccine with and without Escherichia coli heat-labile toxin in adult volunteers. J. Virol. 73(9), 7780–7786 (1999).
  • Kunisawa J, Nakagawa S, Mayumi T. Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development. Adv. Drug Deliv. Rev. 52(3), 177–186 (2001).
  • Sakaue G, Hiroi T, Nakagawa Y et al. HIV mucosal vaccine: nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-liposome induces antigen-specific CTLs and neutralizing antibody responses. J. Immunol. 170(1), 495–502 (2003).
  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu. Rev. Biomed. Eng. 14, 17–46 (2012).
  • Makidon PE, Bielinska AU, Nigavekar SS et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS ONE 3(8), e2954 (2008).
  • McDermott MR, Heritage PL, Bartzoka V, Brook MA. Polymer-grafted starch microparticles for oral and nasal immunization. Immunol. Cell Biol. 76(3), 256–262 (1998).
  • Baras B, Benoit MA, Dupré L et al. Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. Infect. Immun. 67(5), 2643–2648 (1999).
  • Lemoine D, Préat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J. Control. Release 54(1), 15–27 (1998).
  • Patel MM, Glass R, Desai R, Tate JE, Parashar UD. Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? Lancet Infect. Dis. 12(7), 561–570 (2012).
  • Charpilienne A, Lepault J, Rey F, Cohen J. Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. J. Virol. 76(15), 7822–7831 (2002).
  • McNeal MM, Rae MN, Bean JA, Ward RL. Antibody-dependent and -independent protection following intranasal immunization of mice with rotavirus particles. J. Virol. 73(9), 7565–7573 (1999).
  • Johansson E, Istrate C, Charpilienne A et al. Amount of maternal rotavirus-specific antibodies influence the outcome of rotavirus vaccination of newborn mice with virus-like particles. Vaccine 26(6), 778–785 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.