623
Views
20
CrossRef citations to date
0
Altmetric
Review

Vaccines against atherosclerosis

, &
Pages 311-321 | Published online: 09 Jan 2014

References

  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16), 1685–1695 (2005).
  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 111(25), 3481–3488 (2005).
  • Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16), 1832–1844 (2007).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1(2), 135–145 (2001).
  • Björkbacka H, Kunjathoor VV, Moore KJ et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10(4), 416–421 (2004).
  • Michelsen KS, Wong MH, Shah PK et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101(29), 10679–10684 (2004).
  • Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115(11), 3149–3156 (2005).
  • Björkbacka H. Multiple roles of Toll-like receptor signaling in atherosclerosis. Curr. Opin. Lipidol. 17(5), 527–533 (2006).
  • Gonçalves I, Edsfeldt A, Ko NY et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler. Thromb. Vasc. Biol. 32(6), 1505–1512 (2012).
  • Wilensky RL, Shi Y, Mohler ER 3rd et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med. 14(10), 1059–1066 (2008).
  • Serruys PW, García-García HM, Buszman P et al.; Integrated Biomarker and Imaging Study-2 Investigators. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118(11), 1172–1182 (2008).
  • Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135(1), 169–175 (1989).
  • Binder CJ, Chang MK, Shaw PX et al. Innate and acquired immunity in atherogenesis. Nat. Med. 8(11), 1218–1226 (2002).
  • Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102(24), 2919–2922 (2000).
  • Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 94(9), 4642–4646 (1997).
  • Daugherty A, Puré E, Delfel-Butteiger D et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/- mice. J. Clin. Invest. 100(6), 1575–1580 (1997).
  • Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102(5), 1596–1601 (2005).
  • Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23(3), 454–460 (2003).
  • Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24(11), 2137–2142 (2004).
  • Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163(3), 1117–1125 (2003).
  • King VL, Cassis LA, Daugherty A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am. J. Pathol. 171(6), 2040–2047 (2007).
  • Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79(3), 360–376 (2008).
  • Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat. Rev. Immunol. 10(10), 683–687 (2010).
  • Caruso R, Stolfi C, De Nitto D, Pallone F, Monteleone G. The dual role of interleukin-25 in the control of immune-mediated pathologies. Curr. Mol. Med. 11(1), 26–30 (2011).
  • Binder CJ, Hartvigsen K, Chang MK et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114(3), 427–437 (2004).
  • Sämpi M, Ukkola O, Päivänsalo M, Kesäniemi YA, Binder CJ, Hörkkö S. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J. Am. Coll. Cardiol. 52(17), 1370–1378 (2008).
  • Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol. 19(3), 281–286 (2007).
  • van Es T, van Puijvelde GH, Ramos OH et al. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem. Biophys. Res. Commun. 388(2), 261–265 (2009).
  • Smith E, Prasad KM, Butcher M et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121(15), 1746–1755 (2010).
  • Gao Q, Jiang Y, Ma T et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J. Immunol. 185(10), 5820–5827 (2010).
  • Madhur MS, Funt SA, Li L et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31(7), 1565–1572 (2011).
  • Taleb S, Romain M, Ramkhelawon B et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206(10), 2067–2077 (2009).
  • Dart ML, Jankowska-Gan E, Huang G et al. Interleukin-17-dependent autoimmunity to collagen type V in atherosclerosis. Circ. Res. 107(9), 1106–1116 (2010).
  • Xie JJ, Wang J, Tang TT et al. The Th17/Treg functional imbalance during atherogenesis in ApoE(-/-) mice. Cytokine 49(2), 185–193 (2010).
  • Eid RE, Rao DA, Zhou J et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119(10), 1424–1432 (2009).
  • Chang DH, Deng H, Matthews P et al. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112(4), 1308–1316 (2008).
  • Tupin E, Nicoletti A, Elhage R et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199(3), 417–422 (2004).
  • Nakai Y, Iwabuchi K, Fujii S et al. Natural killer T cells accelerate atherogenesis in mice. Blood 104(7), 2051–2059 (2004).
  • Major AS, Wilson MT, McCaleb JL et al. Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24(12), 2351–2357 (2004).
  • Ström A, Wigren M, Hultgårdh-Nilsson A et al. Involvement of the CD1d-natural killer T-cell pathway in neointima formation after vascular injury. Circ. Res. 101(8), e83–e89 (2007).
  • Corthay A. How do regulatory T cells work? Scand. J. Immunol. 70(4), 326–336 (2009).
  • de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2(8), e779 (2007).
  • Veillard NR, Steffens S, Burger F, Pelli G, Mach F. Differential expression patterns of proinflammatory and antiinflammatory mediators during atherogenesis in mice. Arterioscler. Thromb. Vasc. Biol. 24(12), 2339–2344 (2004).
  • Ait-Oufella H, Salomon BL, Potteaux S et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12(2), 178–180 (2006).
  • Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114(19), 2047–2055 (2006).
  • Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112(9), 1342–1350 (2003).
  • Mallat Z, Gojova A, Brun V et al. Induction of a regulatory T-cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108(10), 1232–1237 (2003).
  • Mor A, Planer D, Luboshits G et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(4), 893–900 (2007).
  • Wigren M, Björkbacka H, Andersson L et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol. 32(8), 2000–2004 (2012).
  • Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur. Heart J. 27(21), 2530–2537 (2006).
  • Han SF, Liu P, Zhang W et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin. Immunol. 124(1), 90–97 (2007).
  • Cheng X, Yu X, Ding YJ et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127(1), 89–97 (2008).
  • Ammirati E, Cianflone D, Banfi M et al. Circulating CD4+CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30(9), 1832–1841 (2010).
  • Fyfe AI, Qiao JH, Lusis AJ. Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J. Clin. Invest. 94(6), 2516–2520 (1994).
  • Elhage R, Gourdy P, Brouchet L et al. Deleting TCR α β+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am. J. Pathol. 165(6), 2013–2018 (2004).
  • Kolbus D, Ljungcrantz I, Söderberg I et al. TAP1-deficiency does not alter atherosclerosis development in ApoE-/- mice. PLoS One 7(3), e33932 (2012).
  • Roselaar SE, Kakkanathu PX, Daugherty A. Lymphocyte populations in atherosclerotic lesions of apoE-/- and LDL receptor-/- mice. Decreasing density with disease progression. Arterioscler. Thromb. Vasc. Biol. 16(8), 1013–1018 (1996).
  • Gewaltig J, Kummer M, Koella C, Cathomas G, Biedermann BC. Requirements for CD8 T-cell migration into the human arterial wall. Hum. Pathol. 39(12), 1756–1762 (2008).
  • Kolbus D, Ramos OH, Berg KE et al. CD8+ T-cell activation predominate early immune responses to hypercholesterolemia in ApoE-/- mice. BMC Immunol. 11, 58 (2010).
  • Zhou X, Hansson GK. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50(1), 25–30 (1999).
  • Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109(6), 745–753 (2002).
  • Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22(11), 1892–1898 (2002).
  • Ait-Oufella H, Herbin O, Bouaziz JD et al. B-cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207(8), 1579–1587 (2010).
  • Kyaw T, Tay C, Khan A et al. Conventional B2 B-cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185(7), 4410–4419 (2010).
  • Kyaw T, Tay C, Hosseini H et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One 7(1), e29371 (2012).
  • Hulthe J. Antibodies to oxidized LDL in atherosclerosis development – clinical and animal studies. Clin. Chim. Acta 348(1–2), 1–8 (2004).
  • Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. 14(1), 32–40 (1994).
  • Frostegård J, Wu R, Giscombe R, Holm G, Lefvert AK, Nilsson J. Induction of T-cell activation by oxidized low density lipoprotein. Arterioscler. Thromb. 12(4), 461–467 (1992).
  • Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92(9), 3893–3897 (1995).
  • Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T-cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207(5), 1081–1093 (2010).
  • Wick G, Xu Q. Atherosclerosis – an autoimmune disease. Exp. Gerontol. 34(4), 559–566 (1999).
  • Perschinka H, Mayr M, Millonig G et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23(6), 1060–1065 (2003).
  • Afek A, George J, Gilburd B et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14(2), 115–121 (2000).
  • Xu Q, Dietrich H, Steiner HJ et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. 12(7), 789–799 (1992).
  • Birnie DH, Holme ER, McKay IC, Hood S, McColl KE, Hillis WS. Association between antibodies to heat shock protein 65 and coronary atherosclerosis. Possible mechanism of action of Helicobacter pylori and other bacterial infections in increasing cardiovascular risk. Eur. Heart J. 19(3), 387–394 (1998).
  • Xu Q, Willeit J, Marosi M et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341(8840), 255–259 (1993).
  • Dunér P, To F, Alm R et al. Immune responses against fibronectin modified by lipoprotein oxidation and their association with cardiovascular disease. J. Intern. Med. 265(5), 593–603 (2009).
  • Dunér P, To F, Beckmann K et al. Immunization of apoE-/- mice with aldehyde-modified fibronectin inhibits the development of atherosclerosis. Cardiovasc. Res. 91(3), 528–536 (2011).
  • Dunér P, To F, Berg K et al. Immune responses against aldehyde-modified laminin accelerate atherosclerosis in Apoe-/- mice. Atherosclerosis 212(2), 457–465 (2010).
  • Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92(3), 821–825 (1995).
  • Ameli S, Hultgårdh-Nilsson A, Regnström J et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16(8), 1074–1079 (1996).
  • Nilsson J, Calara F, Regnstrom J et al. Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon injury in hypercholesterolemic rabbits. J. Am. Coll. Cardiol. 30(7), 1886–1891 (1997).
  • Freigang S, Hörkkö S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18(12), 1972–1982 (1998).
  • George J, Afek A, Gilburd B et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138(1), 147–152 (1998).
  • Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21(1), 108–114 (2001).
  • Fredrikson GN, Hedblad B, Berglund G et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23(5), 872–878 (2003).
  • Fredrikson GN, Söderberg I, Lindholm M et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23(5), 879–884 (2003).
  • Fredrikson GN, Andersson L, Söderberg I et al. Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2-specific antibody expression. Autoimmunity 38(2), 171–179 (2005).
  • Chyu KY, Zhao X, Reyes OS et al. Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem. Biophys. Res. Commun. 338(4), 1982–1989 (2005).
  • Schiopu A, Bengtsson J, Söderberg I et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110(14), 2047–2052 (2004).
  • Schiopu A, Frendéus B, Jansson B et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1(-/-)/low-density lipoprotein receptor(-/-) mice. J. Am. Coll. Cardiol. 50(24), 2313–2318 (2007).
  • Fredrikson GN, Björkbacka H, Söderberg I, Ljungcrantz I, Nilsson J. Treatment with apo B peptide vaccines inhibits atherosclerosis in human apo B-100 transgenic mice without inducing an increase in peptide-specific antibodies. J. Intern. Med. 264(6), 563–570 (2008).
  • Wigren M, Kolbus D, Dunér P et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J. Intern. Med. 269(5), 546–556 (2011).
  • Chyu KY, Zhao X, Dimayuga PC et al. CD8+ T cells mediate the athero-protective effect of immunization with an ApoB-100 peptide. PLoS One 7(2), e30780 (2012).
  • Kong N, Lan Q, Chen M et al. Antigen-specific transforming growth factor ß-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance. Arthritis Rheum. 64(8), 2548–2558 (2012).
  • van Puijvelde GH, Hauer AD, de Vos P et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114(18), 1968–1976 (2006).
  • Klingenberg R, Lebens M, Hermansson A et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30(5), 946–952 (2010).
  • Herbin O, Ait-Oufella H, Yu W et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32(3), 605–612 (2012).
  • Hjerpe C, Johansson D, Hermansson A, Hansson GK, Zhou X. Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in ApoE(-/-) mice. Atherosclerosis 209(2), 436–441 (2010).
  • Hermansson A, Johansson DK, Ketelhuth DF, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123(10), 1083–1091 (2011).
  • Chou MY, Hartvigsen K, Hansen LF et al. Oxidation-specific epitopes are important targets of innate immunity. J. Intern. Med. 263(5), 479–488 (2008).
  • Faria-Neto JR, Chyu KY, Li X et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189(1), 83–90 (2006).
  • Binder CJ, Hörkkö S, Dewan A et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9(6), 736–743 (2003).
  • Caligiuri G, Khallou-Laschet J, Vandaele M et al. Phosphorylcholine-targeting immunization reduces atherosclerosis. J. Am. Coll. Cardiol. 50(6), 540–546 (2007).
  • Harats D, Yacov N, Gilburd B, Shoenfeld Y, George J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40(7), 1333–1338 (2002).
  • Maron R, Sukhova G, Faria AM et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106(13), 1708–1715 (2002).
  • van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T-cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(12), 2677–2683 (2007).
  • Lu X, Chen D, Endresz V et al. Immunization with a combination of ApoB and HSP60 epitopes significantly reduces early atherosclerotic lesion in Apobtm2SgyLdlrtm1Her/J mice. Atherosclerosis 212(2), 472–480 (2010).
  • Khallou-Laschet J, Tupin E, Caligiuri G et al. Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 184(2), 330–341 (2006).
  • Wigren M, Bengtsson D, Dunér P et al. Atheroprotective effects of Alum are associated with capture of oxidized LDL antigens and activation of regulatory T cells. Circ. Res. 104(12), e62–e70 (2009).
  • Fernando MM, Stevens CR, Walsh EC et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4(4), e1000024 (2008).
  • Swanberg M, Lidman O, Padyukov L et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet. 37(5), 486–494 (2005).
  • Fredrikson GN, Schiopu A, Berglund G, Alm R, Shah PK, Nilsson J. Autoantibody against the amino acid sequence 661–680 in apo B-100 is associated with decreased carotid stenosis and cardiovascular events. Atherosclerosis 194(2), e188–e192 (2007).
  • Sjögren P, Fredrikson GN, Samnegard A et al. High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur. Heart J. 29(18), 2218–2226 (2008).
  • Engelbertsen D, Anand DV, Fredrikson GN et al. High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes. J. Intern. Med. 271(1), 82–89 (2012).
  • Fredrikson GN, Anand DV, Hopkins D et al. Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 52(7), 1426–1433 (2009).
  • Nilsson J, Fredrikson GN, Björkbacka H, Chyu K.-Y, Shah PK. Vaccines modulating lipoprotein autoimmunity as a possible future therapy for cardiovascular disease. J. Intern. Med. 266(3), 221–231 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.