1,755
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the infiltration process with a multi-layer perceptron artificial neural network

Modélisation du processus d'infiltration avec un réseau de neurones artificiel de type perceptron multi-couches

Pages 3-20 | Received 19 Aug 2004, Accepted 02 Sep 2005, Published online: 19 Jan 2010

REFERENCES

  • Abdul-Wahab , S. A. and Al-Alawi , S. M. 2002 . Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. . Envir. Modell. Software , 17 : 219 – 228 .
  • Anctil , F. , Michel , C. , Perrin , C. and Andréassian , V. 2004 . A soil moisture index as an auxiliary ANN input for stream flow forecasting. . J. Hydrol. , 286 : 155 – 167 .
  • Anderson , M. G. and Burt , T. P. 1990 . “ Process studies in hillslope hydrology: an overview. ” . In Process Studies in Hillslope Hydrology Edited by: Anderson , M. G. and Burt , T. P. 1 – 9 . Chichester, UK : John Wiley & Sons Ltd .
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology . 2000a . Artificial neural networks in hydrology. I. Preliminary concepts. . J. Hydrol. Engng ASCE , 5 ( 2 ) : 115 – 123 .
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology . 2000b . Artificial neural networks in hydrology. II. Hydrologic applications. . J. Hydrol. Engng ASCE , 5 ( 2 ) : 124 – 137 .
  • Bandibas , J. C. and Kohyama , K. 2001 . An efficient artificial neural network training method through induced learning retardation: inhibited brain learning. . Asian J. Geoinformatics , 1 ( 4 ) : 45 – 55 .
  • Cameron , D. , Kneale , P. and See , L. 2002 . An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. . Hydrol. Processes , 16 : 1033 – 1046 .
  • Cerdà , A. 1997 . Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. . J. Hydrol. , 198 : 209 – 225 .
  • Cigizoglu , H. K. 2004 . Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. . Adv. Water Resour. , 27 : 185 – 195 .
  • Chow , V. T. , Maidment , D. R. and Mays , L. W. 1988 . Applied Hydrology New York, USA : McGraw-Hill Book Company .
  • Dawson , C. W. and Wilby , R. 2001 . Hydrological modeling using artificial neural networks. . Progr. Phys. Geogr. , 25 : 80 – 18 .
  • Fahlman , S. E. 1988 . “ Fast learning variations of back-propagation: an empirical study. ” . In Proc. 1988 Connectionist Models Summer School 38 – 51 . San Francisco, California, USA : Morgan Kaufmann Publishers, Inc. .
  • Fernando , D. , Achela , K. and Jayawardena , A. W. 1998 . Runoff forecasting using RBF networks with OLS algorithm. . J. Hydrol. Engng ASCE , 3 ( 3 ) : 203 – 209 .
  • Geman , S. , Bienenstock , E. and Doursat , R. 1992 . Neural networks and the bias/variance dilemma. . Neural Comp. , 4 : 1 – 58 .
  • Green , W. H. and Ampt , G. A. 1911 . Studies in soil physics. I. Flow of air and water through soils. . J. Agric. Sci. , 4 : 1 – 24 .
  • Hanson , S. J. , Cowan , J. D. and Giles , C. L. 1993 . Advances in Neural Information Systems Vol. 5 , San Francisco, California, USA : Morgan Kaufman Publishers Inc. .
  • Harden , C. P. and Scruggs , P. D. 2003 . Infiltration on mountain slopes: a comparison of three environments. . Geomorphol. , 55 : 5 – 24 .
  • Horton , R. E. 1933 . The role of infiltration in the hydrological cycle. . Trans. Am. Geophys. Union , 14 : 446 – 460 .
  • Horton , R. E. 1940 . An approach toward a physical interpretation of infiltration capacity. . Soil Sci. Soc. Am. J. , 5 : 399 – 417 .
  • Islam , S. and Kothari , R. 2000 . Artificial neural networks in remote sensing of hydrologic processes. . J. Hydrol. Engng ASCE , 5 ( 2 ) : 138 – 144 .
  • Klute , A. 1986 . Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, , second edn Madison, Wisconsin, USA : American Soc. of Agron. .
  • Kostiakov , A. N. 1932 . “ On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. ” . In Trans. Sixth Comm. of the Int. Soc. of Soil Sci., Part A 17 – 31 .
  • LeCun , Y. , Bottou , L. , Orr , G. B. and Müller , K. R. 1998 . “ Efficient backProp. ” . In Neural Networks: Tricks of the Trade Edited by: Orr , G. B. and Müller , K. R. 9 – 53 . Berlin, Germany : Springer-Verlag .
  • Maier , H. R. and Dandy , G. C. 1998 . Understanding the behavior and optimising the performance of back-propagation neural networks: an empirical study. . Envir. Modell. Software , 13 : 179 – 191 .
  • Maier , H. R. and Dandy , G. C. 2000 . Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. . Envir. Modell. Software , 15 : 101 – 124 .
  • Martin , D. A. and Moody , J. A. 2001 . Comparison of soil infiltration rates in burned and unburned mountainous watersheds. . Hydrol. Processes , 15 : 2893 – 2903 .
  • Minns , A. W. and Hall , M. J. 1996 . Artificial neural networks as rainfall—runoff models. . Hydrol. Sci. J. , 41 ( 3 ) : 399 – 417 .
  • Mishra , S. K. , Tyagi , J. V. and Singh , V. P. 2003 . Comparison of infiltration models. . Hydrol. Processes , 17 : 2629 – 2652 .
  • Orr , G. B. and Müller , K. R. , eds. 1998 . Neural Networks: Tricks of the Trade. Berlin, Germany : Springer-Verlag .
  • Philip , J. R. 1957 . Theory of Infiltration. Australia : Division of Plant Industry, CSIRO .
  • Principe , J. C. , Euliano , N. R. and Lefebvre , W. C. 2000 . Neural and Adaptive Systems: Fundamentals through Simulations. New York, USA : John Wiley & Sons, Inc. .
  • Rajurkar , M. P. , Kothyari , U. C. and Chaube , U. C. 2004 . Modeling of the daily rainfall—runoff relationship with artificial neural network. . J. Hydrol. , 285 : 96 – 113 .
  • Rawls , W. J. , Ahuja , L. R. , Brakensiek , D. L. and Shirmohammadi , A. 1993 . “ Infiltration and soil water movement. Chapter 5 ” . In Handbook of Hydrology Edited by: Maidment , D. R. New York, USA : McGraw—Hill, Inc. .
  • Richards , L. A. 1931 . Capillary conduction of liquids through porous mediums. . Physics , 1 : 318 – 333 .
  • Shin , H. S. and Salas , J. D. 2000 . Regional drought analysis based on neural networks. . J. Hydrol. Engng ASCE , 5 ( 2 ) : 145 – 155 .
  • Sudheer , K. P. and Jain , S. K. 2003 . Radial basis function neural network for modeling rating curves. . J. Hydrol. Engng ASCE , 8 ( 3 ) : 161 – 164 .
  • Sudheer , K. P. , Gosain , A. K. and Rangan , D. M. 2002 . A data-driven algorithm for constructing artificial neural network rainfall—runoff models. . Hydrol. Processes , 16 : 1325 – 1330 .
  • Suen , J. P. and Eheart , J. W. 2003 . Evaluation of neural networks for modeling nitrate concentration in rivers. . J. Water Resour. Plan. Manage. , 129 ( 6 ) : 505 – 510 .
  • Sy , N. L. 2004 . “ Artificial neural network modeling of infiltration from plot-scale rainfall simulator data. ” . In Hydroinformatics Edited by: Liong , S. Y. , Phoon , K. K. and Babovic , V. (Proc. Sixth Int. Conf. on Hydroinformatics, June 2004), 1433–1440. World Scientific Publishing Co., Pte. Ltd., Singapore
  • Sy , N. L. and Calo , E. T. 2001 . “ Utilization of the USC-CED field rainfall simulator as a research tool for understanding the infiltration process of the hydrologic cycle. ” . In Proc. Fourth National Civil Engng Education Congress (De La Salle Univ., Manila, Philippines, 2–4 May 2001) Manila, Philippines : De La Salle Univ. Press .
  • Tokar , A. S. and Momcilo , M. 2000 . Precipitation—runoff modeling using artificial neural networks and conceptual models . J. Hydrol. Engng ASCE , 5 ( 20 ) : 156 – 161 .
  • Trajkovic , S. , Todorovic , B. and Stankovic , M. 2003 . Forecasting of reference evapotranspiration by artificial neural networks. . J. Irrig. Drain. Div. ASCE , 128 ( 6 ) : 454 – 457 .
  • Zapranis , A. and Refenes , A. P. 1999 . Principles of Neural Model Identification, Selection and Adequacy with Applications to Financial Econometrics Berlin, Germany : Springer-Verlag .
  • Zhang , B. and Govindaraju , R. S. 2003 . Geomorphology-based artificial neural networks (GANN) for estimation of direct runoff over watershed. . J. Hydrol. , 273 : 18 – 34 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.