400
Views
28
CrossRef citations to date
0
Altmetric
Genetic Resources Evaluation

Utilizing Chromosome Segment Substitution Lines (CSSLs) for Evaluation of Root Responses to Transient Moisture Stresses in Rice

, &
Pages 457-465 | Received 28 Dec 2007, Accepted 02 May 2008, Published online: 03 Dec 2015

References

  • Ahmadi, N., Courtois, B., Khowaja, F., Price, A., Frouin, J., Hamelin, C. and Ruiz, M. 2007. Meta-analysis of QTLs involved in rice root development using a QTL database. In R. Serraj ed., International Symposium on Root Biology and MAS Strategies for Drought Resistance Improvement in Rice. UAS-Bangalore, India. 29-30.
  • Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration, and waterlogging. Physiol. Plant. 25 : 192-197.
  • Azhiri-Sigari, T., Yamauchi, A., Kamoshita, A. and Wade, L.J. 2000. Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Prod. Sci. 3 : 180-188.
  • Champoux, M.C., Wang, G., Sarkarung, S., Mackill, D.J., O’Toole, J.C., Huang, N. and MacCouch, S.R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 90 : 969-981.
  • Colmer, T.D. 2003a. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L.). Ann. Bot. 91 : 301-309.
  • Colmer, T.D. 2003b. Long-distance transport of gases in plants : a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26 : 17-36.
  • Colmer, T.D., Gibberd, M.R., Wiengweera, A. and Tinh, T.K. 1998. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J. Exp. Bot. 49 : 1431-1436.
  • Ebitani T., Takeuchi, Y., Nonoue, Y., Yamamoto, T., Takeuchi, K. and Yano, M. 2005. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed. Sci. 55 : 65-73.
  • Hoque, M.M. and Kobata, T. 1998. Growth responses of drought resistant rice cultivars to soil compaction under irrigated and succeeding non-irrigated conditions during the vegetative stage. Plant Prod. Sci. 1 : 183-190.
  • Horii, H., Nemoto, K., Miyamoto, N. and Harada, J. 2006. Quantitative trait loci for adventitious and lateral roots in rice. Plant Breed. 125 : 198-200.
  • Insalud, N., Bell, R.W., Colmer, T.D. and Rerkasem, B. 2006. Morphological and physiological responses of rice (Oryza sativa L.) to limited phosphorus supply in aerated and stagnant solution culture. Ann. Bot. 98 : 995-1004.
  • Ito, K., Tanakamaru, K., Morita, S., Abe, J. and Inanaga, S. 2006. Lateral root development, including responses to soil drying, of maize (Zea mays) and wheat (Triticum aestivum) seminal roots. Physiol. Plant. 127 : 260–267.
  • Kamoshita, A., Wade, L.J. and Yamauchi, A. 2000. Genotypic variation in response of rainfed lowland rice to drought and rewatering. III. Water extraction during drought period. Plant Prod. Sci. 3 : 189-196.
  • Kamoshita, A., Wade, L.J., Ali, M.M., Pathan, M.S., Zhang, J., Sarkarung, S. and Nguyen, H.T. 2002a. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor. Appl. Genet. 104 : 880-893.
  • Kamoshita, A., Zhang, J., Siopongco, J., Sarkarung, S., Nguyen, H.T. and Wade, L.J. 2002b. Effects of phenotyping environment on identification of QTL for rice root morphology under anaerobic conditions. Crop Sci. 42 : 255-265.
  • Kono, Y., Igeta, M. and Yamada, N. 1972. Studies on the developmental physiology of lateral roots in rice seminal roots. Proc. Crop Sci. Soc. Jpn. 41 : 192-204.
  • Kono, Y. and Yamada, N. 1972. Studies on the developmental physiology of the relationship between the cortical integration and lateral root growth in rice seminal roots. Proc. Crop Sci. Soc. Jpn. 41 : 256-266.
  • Kubo, T., Aida, Y., Nakamura, K., Tsunematsu, H., Doi, K. and Yoshimura, A. 2002. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed. Sci. 52 : 319-325.
  • Lin, S.Y., Sasaki T. and Yano, M. 1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L. using backcross inbred lines. Theor. Appl. Genet. 96 : 997-1003.
  • Ma, J.F., Shen, R., Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T. and Yano, M. 2002. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol. 43 : 652-659.
  • MacMillan, K., Emrich, K., Piepho, H.P., Mullins, C.E. and Price, A.H. 2006. Assessing the importance of genotype X environment interaction for root traits in rice using a mapping population II : conventional QTL analysis. Theor. Appl. Genet. 113 : 953-964.
  • Nagata, K., Fukuta, Y., Shimizu, H., Yagi, T., and Terao, T. 2002. Quantitative trait loci for sink size and ripening traits in rice (Oryza sativa L.). Breed. Sci. 52 : 259-273.
  • Ober, E.S. and Sharp, R.E. 2003. Electrophysiological responses of maize roots to low water potentials : relationship to growth and ABA accumulation. J. Exp. Bot. 54 : 813-824.
  • Ogawa, A., Kawashima, C. and Yamauchi, A. 2005. Sugar accumulations along the seminal root axis, as affected by osmotic stress in maize : A possible physiological basis for plastic lateral root development. Plant Prod. Sci. 8 : 73-180.
  • Ogawa, A. and Yamauchi, A. 2006a. Root osmotic adjustment under osmotic stress in maize seedlings. 1. Transient change of growth and water relations in roots in response to osmotic stress. Plant Prod. Sci. 9 : 27-38.
  • Ogawa, A. and Yamauchi, A. 2006b. Root osmotic adjustment under osmotic stress in maize seedlings. 2. Mode of accumulation of several solutes for osmotic adjustment in the root. Plant Prod. Sci. 9 : 39-46.
  • Price, A.H., Steele, K.A., Moore, B.J. and Jones, R.G.W. 2002. Upland rice grown in soil filled chambers and exposed to contrasting water-deficit regimes II. Mapping quantitative trait loci for root morphology and distribution. Field Crop Res. 76 : 25-43.
  • Raymond, M.J. and Smirnoff, N. 2002. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89 : 813-823.
  • Rice Genome Resource Center, 2005. Materials for genetic analysis. [Online]. Available at http://www.rgrc.dna.affrc.go.jp/stock.html (accessed 1 April 2004; verified 10 May 2008). National Institute of Agrobiological Sciences, Tsukuba, Japan.
  • Siopongco, J.D.L.C., Yamauchi, A., Salekdeh, H., Bennett, J. and Wade, L.J., 2005. Root growth and water extraction responses of doubled-haploid rice lines to drought and rewatering during the vegetative stage. Plant Prod. Sci. 8 : 497-508.
  • Siopongco, J.D.L.C., Yamauchi, A., Salekdeh, H., Bennett, J. and Wade, L.J. 2006. Growth and water use response of doubled-haploid rice lines to drought and rewatering during the vegetative stage. Plant Prod. Sci. 9 : 141-151.
  • Suralta, R.R. and Yamauchi, A. 2008. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. (in press) doi : 10.1016 / j.envexpbot.2008.01.004.
  • Suralta, R.R., Inukai, Y. and Yamauchi, A. 2008. Genotypic variations in responses of lateral root development to transient moisture stresses in rice cultivars. Plant Prod. Sci. 11 : 324-335.
  • Verslues, P.E., Ober, E.S. and Sharp, R.E. 1998. Oxygen relations and root growth at low water potentials. Impact of oxygen avalibility in polyethylene glycol solutions. Plant Physiol. 96 : 1125-1130.
  • Visser, E.J.W. and Bögenmann, G.M. 2003. Measurement of porosity in very small samples of plant tissue. Plant Soil 253 : 81-90.
  • Wang, H., and Yamauchi, A. 2006. Growth and function of roots under abiotic stress soils. In B. Huang ed., Plant-Environment Interactions 3rd ed. CRC Press, Taylor and Francis Group, LLC, New York. 271-320.
  • Wiengweera, A., Greenway, H. and Thomson, C.J. 1997. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80 : 115-123.
  • Yamauchi, A., Pardales Jr., J.R. and Kono, Y. 1996. Root system structure and its relation to stress tolerance. In O. Ito et al. eds., Dynamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics. Jpn. Int. Res. Cent. Agric. Sci. Tsukuba. 211-234.
  • Yano, M., Kojima, S., Takahashi, Y., Lin, H.X. and Sasaki, T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127 : 1425-1429.
  • Zheng, B.S., Yang, L., Zhang, W.P., Mao, C.Z., Wu, Y.R., Yi, K.K., Liu, F.Y., and Wu, P. 2003. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet. 107 : 1505-1515.