1,025
Views
8
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Growth and Nutrient Accumulation of Winged Bean and Velvet Bean as Cover Crops in a Subtropical Region

, , &
Pages 360-366 | Received 27 May 2009, Accepted 01 May 2010, Published online: 03 Dec 2015

  • Anthofer, J. and Kroschel, J. 2005. Above-ground biomass, nutrients, and persistence of an early and a late maturing Mucuna variety in the forest-savannah transitional zone of Ghana. Agric. Ecosys. Environ. 110: 59–77.
  • Anugroho, F., Yamashita, T., Kitou, M. and Hashiguchi, S. 2007. Potential utilization of winged bean as a cover crop. In Proceedings of the 46th Annual Meeting of the Weed Science Society of Japan, Okinawa, Japan, 242–243.
  • Asian Productivity Organization. 2003. Processing and utilization of legumes. Part III. Country papers: Indonesia. Asian Productivity Organization, Tokyo.
  • Baijkya, F.P., De Ridder, N. and Giller, K.E. 2005. Managing legume cover crops and their residues to enhance productivity of degraded soils in the humid tropics: a case study in Bukoba District.,Tanzania. Nutr. Cycl. Agroecosys. 73: 75–87.
  • Barthés, B., Azontonde, A., Blanchart, E., Girardin, C., Villenave, C., Lesaint, S., Oliver, R., Mariotti, A. and Feller, C. 2004. Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an ultisol under maize cultivation in southern Benin. Soil Use Manag. 20: 231–239.
  • Bodner, G., Loiskandl, W. and Kaul, H.P. 2007. Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agri. Water Manag. 93: 85–98.
  • Caamal-Maldonado, J.A., Jimenez-Osornio, J.J., Torres-Barragan, A. and Anaya, A.L. 2001. The use of allelopathic legume cover crops and mulch species for weed control in cropping systems. Agron. J. 93: 27–36.
  • Chikagwa-Malunga, S.K., Adesogan, A.T., Sollenberger, L.E., Badinga, L.K., Szabo, N.J. and Littell, R.C. 2009. Nutritional characterization of Mucuna pruriens. 1. Effect of the maturity on the nutritional quality of botanical fractions and the whole plants. Animal Feed Sci Tech. 148: 34–50.
  • Chow, K.K. and Price, T.V. 1989. Biomass and flower production of winged bean in a nutrient film (NFT) hydroponic system. Plant Soil 113: 85–92.
  • Dhanasekaran, M., Tharakan, B. and Manyam, B.V. 2008. Antiparkinson drug: Mucuna pruriens shows antioxidant and metal chelating activity. Phytother. Res. 22: 6–11.
  • Eilitta, M., Sollenberger, L.E., Littell, R.C. and Harrington, L.W. 2003. On-farm experiments with maize-mucuna systems in the Los Tuxtlas Region of Veracruz, southern Mexico. II. Mucuna variety evaluation and subsequent maize grain yield. Expl. Agric. 39: 19–27.
  • Fujii, Y. 2003. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from velvet bean (Mucuna pruriens) and hairy vetch (Vicia villosa). Biol. Sci. Space 17: 6–13.
  • Fujii, Y., Shibuya, T. and Yasuda, T. 1991. L-3,4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L.) D.C. var. utilis. Agr. Biol. Chem. 55: 617–618.
  • Gleissman, S.R. 1983. Allelopathic interactions in crop-weed mixtures: applications for weed management. J. Chem. Ecol. 9: 991–999.
  • Hafner, H., George, E., Bationo, A. and Marschner, H. 1993. Effect of crop residues on root growth and phosphorus acquisition of pearl millet in an acid sandy soil in Niger. Plant Soil 150: 117–127.
  • Hauser, S. and Nolte, C. 2002. Biomass production and N fixation of five Mucuna pruriens varieties and their effect on maize yields in the forest zone of Cameroon. J. Plant Nutr. Soil Sci. 165: 101–109.
  • Ibewiro, B., Sanginga, N., Vanlauwe, B. and Merckx, R. 2000. Nitrogen contributions from decomposing cover crop residues to maize in a tropical derived savanna. Nutr. Cycl. Agroecosys. 57: 131–140.
  • Japan Meteorological Agency. 2008. Monthly climate reports. Available at www.jma.go.jp/jma/index.html (accessed 18 August 2008). Tokyo, Japan.
  • Kaizzi, C.K., Ssali, H. and Vlek, P.L.G. 2004. The potential of velvet bean (Mucuna pruriens) and N fertilizers in maize production on contrasting soils and agro-ecological zones of east Uganda. Nutr. Cycl. Agroecosys. 68: 59–72.
  • Motior, M.R., Shamsuddin, Z.H., Wan Mohamad, W.O. and Wong, K.C. 1998. Nitrogen fixation and seed yield of winged bean (Psophocarpus tetragonolobus (L.) D.C.) under various support systems. Malaysia J. Soil Sci. 2: 59–73.
  • Myers, R.J.K., Palm, C.A., Cuevas, E., Gunatillekel, U.N. and Brossard, M. 1994. The synchronization of nutrient mineralization and plant nutrient demand. In P.L. Woomer and M.J. Swift eds. The Biological Management of Tropical Soil Fertility. John Wiley and Sons, Chichester, UK. 81–116.
  • Nagumo, F., Issaka, R.N. and Hoshikawa, A. 2006. Effects of tillage practices combined with mucuna fallow on soil erosion and water dynamics on Ishigaki Island, Japan. Soil Sci. Plant Nutr. 52: 676–685.
  • Nishihara, E., Parvez, M.M., Araya, H., Kawashima, S. and Fujii, Y. 2005. L-3-(3, 4-dihydroxyphenyl) alanine (L-DOPA), an allelochemical exuded from velvet bean (Mucuna pruriens) roots. Plant Growth Regulat. 45: 113–120.
  • Praveen-Kumar, Tarafdar, J.C., Panwar, J. and Kathju, S. 2003. A rapid method for assessment of plant residue quality. J. Plant Nutr. Soil Sci. 166: 662–666.
  • Puustinen, M., Tattari, S., Koskiaho, J. and Linjama, J. 2007. Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Till. Res. 93: 44–55.
  • Ruegg, J. 1981. Effects of temperature and water stress on the growth and yield of winged bean (Psophocarpus tetragonolobus). J. Hort. Sci. 56: 331–338.
  • Salako, F.K. and Tian, G. 2003. Soil water depletion under various leguminous cover crops in the derived savanna of West Africa. Agric. Ecosyst. Environ. 100: 173–180.
  • Sasaki, H., Shibata, S. and Hatanaka, T. 1994. Method for evaluation of Japanese lawn grass (Zoysia japonica Steud.) ecotypes for different purposes. Bull. Natl. Grassl. Res. Inst. 49: 17–24.
  • Schiavinato, M.A. and Valio, I.F.M. 1996. Influence of photoperiod and temperature on the development of winged bean plants. R. Bras. Fisiol. Veg. 8: 105–110.
  • Steiner, J.L., Schomberg, H.H., Unger, P.W. and Cresap, J. 2000. Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Sci. Soc. Am. J. 64: 2109–2114.
  • Vadivel, V. and Pugalenthi, M. 2009. Effect of soaking in sodium bicarbonate solution followed by autoclaving on the nutritional and antinutritional properties of velvet bean seeds. J. Food Proc. Preserv. 33: 60–73.
  • Weil, R.R. and Belmont, G.S. 1991. Dry matter and nitrogen accumulation and partitioning in field grown winged bean. Exp. Agri. 27: 323–328.
  • Weil, R.R. and Khalil, N.A. 1986. Salinity tolerance of winged bean as compared to that of soybean. Agron. J. 78: 67–70.
  • Weil, R.R. and Samaranayake, A. 1991. Effect of winged bean on a following maize crop. Exp. Agri. 27: 329–338.
  • Wong, K.C. and Schwabe, W.W. 1979. Effects of day length and day/ night on the growth, flowering and tuber formation of winged bean (Psophocarpus tetragonolobus (L.) D.C.). In Proceedings of the Conference on Legumes in the Tropics. University Pertanian Malaysia, Serdang, Malaysia.