1,002
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An Improved Method for Extraction and Measurement of the Inorganic Pyrophosphate in Leaves of Crassulacean Acid Metabolism (CAM) Plants

&
Pages 15-19 | Received 21 Feb 2000, Accepted 01 Sep 2000, Published online: 03 Dec 2015

References

  • Bartholomew, D.P. and Malezieux, E.P. 1994. Pineapple. In B. Schaffer and P. C. Anderson eds., Handbook of Environmen-tal Physiology of Fruit Crops. Vol.2. CRC Press, Boca Raton, Fla. 243–291.
  • Black, C.C. Jr., Mustardy, L., Kormanik, P.P., Sung, S.S., Xu Paz, N. 1987. Regulation and roles for alternative pathways of hexose metabolism in plant. Physiol. Plant. 69 :387–394.
  • Black C.C., Chen, J., Doong, R.L., Angelov, M.N. and Sung, S.J.S. 1996. Alternative carbohydrate reserves used in the daily cycle of Crassulacean acid metabolism. In K. Winter and J. A. C. Smith eds., Crassulacean Acid Metabolism : Biochem- istry, Ecophysiology and Evolution. Springer-Verlag, Berlin. 31–45.
  • Bremberger, C., Haschke, H.-P. and LQttgc, U. 1988. Separation and purification of the tonoplast ATPase and pyrophos- phatase from plants with constitutive and inducible Cras- sulacean acid metabolism. Planta 175 : 465–470.
  • Carnal, N.W. and Black, C.C. 1979. Pyrophosphate-dependent 6 -phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem. Biophys. Res. Commun. 86 : 20–26.
  • Carnal, N.W. and Black, C.C. 1983. Phosphofructokinase activities in photosynthetic organisms : the occurrence of pyrophos- phateGdependent 6-phosphofructokinase in plants. Plant Physiol. 71 : 150–155.
  • Carnal, N.W. and Black, C.C. 1989. Soluble sugars as the carbo- hydrate reserve for CAM in pineapple leaves ; implications for the role pyrophosphate : 6-phosphofructokinase in glycolysis. Plant Physiol. 90 : 91–100.
  • Chen, L-S. and Nose, A. 2000. Characteristics of adenosinetri-phosphatase and inorganic pyrophosphatase in tonoplast isolated from three CAM species, Ananas comosus, Kalanchoë pinnata and K. daigremontiana. Plant Prod. Sci. 3 ; 24–31.
  • Dancer, J.E. and ap Rees, T. 1989. Phosphoribosyl pyrophosphate and the measurement of inorganic pyrophosphate in plant tissues. Planta 177 : 261–264.
  • Dancer, J.E., Veith, R., Fell, R., Komor, E. and Stitt, M. 1990. Independent changes of inorganic pyrophosphate and the ATP/ADP or UTP/UDP ratios in plant cell suspension cultures. Plant Sci. 66 : 59–63.
  • Davis J.M., Poole, R.J. and Sanders, D. 1993. The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP : apparent significance for inorganic-pyrophosphate- driven reactions of intermediary metabolism. Biochim. Bio-phys. Acta. 1141 : 29-36.
  • Duff, S.M.G., Moorhead, G.B.G., Lefebvre, D.D. and Plaxton, W. C. 1989. Phosphate starvation inducible “bypasses” of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol. 90 : 1275–1278.
  • Edwards, J., ap Rees, T., Wilson, P.M. and Morrell, S. 1984. Measurement of the inorganic pyrophosphate in tissues of Pisum sativum L. Planta 162 : 188–191.
  • Kasai, M., Nakamura, T., Kudo, N., Sato, H., Maeshima, M. and Sawada, S. 1998. The activity of the root vacuolar H+ -pyro-phosphatase in rye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiol. 39 : 890–894.
  • Marquardt, G. and Lüttge, U. 1987. Proton translocating enzymes at the tonoplast of leaf cells of the CAM plant Kalanchoë daigremontiana. II The pyrophosphatase. J. Plant Physiol. 129 : 269–286.
  • Nose, A., Miyata, A., Kobayashi, K. and Wasano, K. 1998. Temperature and pH responses of phosphofructokinase from three CAM plants, Ananas comosus, Kalanchoë pinnata and K daigremontiana. In G. Garab ed., Photosynthesis : Mechanisms and Effects. Vol. V. Kluwer Academic Publishers, Dordrecht. 3599–3602.
  • O'Brien, W.E. 1976. A continuous spectrophotometric assay for argininosuccinate synthase based on the pyrophosphate for-mation. Anal. Biochem. 76 : 423–430.
  • Pistelli, L., Marigo, G., Ball, E. and Lilttge, U. 1987. Day-night changes in the levels of adenine nucleotides, phosphoenol-pyruvate and inorganic pyrophosphate in leaves of plants having Grassulacean metabolism. Planta 172 : 479–486.
  • Plaxton, W.C. 1996. The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 : 185–214.
  • Sabularse, D.C. and Anderson, R.L. 1981. D-fructose-2,6-bisphos- phate : a naturally occurring activator for inorganic pyrophos-phate : D-fructose-6-phosphate 1-phosphotransferase. Bio-chem. Biophys. Res. Commun. 103 : 848–855.
  • Smyth, D.A. and Black, C.C. Jr. 1984. Measurement of the pyro-phosphate of plant tissues. Plant Physiol. 75 : 862–864.
  • Stitt, M. 1990. Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 ; 153–185.
  • Takeshige, K. and Tazawa, M. 1989. Determination of the in-organic pyrophosphate level and its subcellular localization in Chara corallina. J. Biol. Chem. 264 : 3262–3266.
  • Weiner, H., Stitt, M. and Herldt, H. W. 1987. Subcellular compart-mcntation of pyrophosphate and alkaline pyrophosphatasc in leaves. Biochim. Biophys. Acta. 893 : 13–21.
  • White, P.J. and Smith, J.A.C. 1989. Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants : specificity of the malate influx system in Kalanchoë dai-gremontiana. Planta 179 : 265–274.