332
Views
14
CrossRef citations to date
0
Altmetric
Crop Physiology & Ecology

Changes in Cell Wall-Bound Phenolic Acids in the Internodes of Submerged Floating Rice

, , &
Pages 441-446 | Received 01 Nov 2004, Accepted 08 Mar 2005, Published online: 03 Dec 2015

References

  • Azuma, T., Mihara, F., Uchida, N., Yasuda, T. and Yamaguchi, T. 1990. Internodal elongation and ethylene concentration of floating rice stem sections submerged at different water depths. Jpn. J. Trop. Agr. 34 : 265-270.
  • Azuma, T., Hirano, T., Deki, Y., Uchida, N., Yasuda, T. and Yamaguchi, T. 1995. Involvement of the decrease in levels of abscisic acid in the internodal elongation of submerged floating rice. J. Plant Physiol. 146 : 323-328.
  • Azuma, T., Sumida, Y., Kaneda, Y., Uchida, N. and Yasuda, T. 1996. Changes in cell wall polysaccharides in the internodes of submerged floating rice. Plant Growth Regul. 19 : 183-187.
  • Azuma, T., Uchida, N. and Yasuda, T. 2001. Low levels of oxygen promote internodal elongation in floating rice independently of enhanced ethylene production. Plant Growth Regul. 34 : 181-186.
  • Azuma, T., Hatanaka, T., Uchida, N. and Yasuda, T. 2003a. Enhancement of transpiration by ethylene is responsible for absence of internodal elongation in floating rice at low humidity. J. Plant Physiol. 160 : 1125-1128.
  • Azuma, T., Hatanaka, T., Uchida, N. and Yasuda, T. 2003b. Interactions between abscisic acid, ethylene and gibberellin in internodal elongation in floating rice: the promotive effect of abscisic acid at low humidity. Plant Growth Regul. 41 : 105-109.
  • Bleecker, A.B., Schuette, J.L. and Kende, H. 1986. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice. Planta 169 : 490-497.
  • Catling, D. 1992. The deepwater rice plant. In: Rice in Deep Water. MacMillan Press, London and Basingstoke. 105-169.
  • Cohen, E. and Kende, H. 1987. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deepwater rice. Enhancement by submergence and low oxygen levels. Plant Physiol. 84 : 282-286.
  • Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol. 37 : 165-186.
  • Fry, S.C., Willis, S.C. and Paterson, A.E.J. 2000. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211 : 679-692.
  • González, L.F., Rojas, M.C. and Perez, F.J. 1999. Diferulate and lignin formation is related to biochemical differences of wall-bound peroxidases. Phytochem. 50 : 711-717.
  • Harris, P.J. and Hartley, R.D. 1976. Detection of bound ferulic acid in the cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259 : 508-510.
  • Hatfield, R.D., Ralph, J. and Grabber, J.H. 1999. Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric. 79 : 403-407.
  • Hoffmann-Benning, S. and Kende, H. 1992. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99 : 1156-1161.
  • Kamisaka, S., Takeda, S., Takahashi, K. and Shibata, K. 1990. Diferulic and ferulic acid in the cell wall of Avena coleoptiles - their relationships to mechanical properties of the cell wall. Physiol. Plant. 78 : 1-7.
  • Kende, H., Van der Knaap, E. and Cho, H.-T. 1998. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 118 : 1105-1110.
  • Kutschera, U. and Kende, H. 1988. The biophysical basis of elongation growth in internodes of deepwater rice. Plant Physiol. 88 : 361-366.
  • MacAdam, J.W. and Grabber, J.H. 2002. Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215 : 785-793.
  • Markwelder, H.U. and Neukom, H. 1976. Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochem. 15 : 836-837.
  • Miyamoto, K., Ueda, J., Takeda, S., Ida, K., Hoson, T., Masuda, Y. and Kamisaka, S. 1994. Light-induced increase in the contents of ferulic and diferulic acids in cell walls of Avena coleoptiles: its relationship to growth inhibition by light. Physiol. Plant. 92 : 350-355.
  • Parvez, M.M., Wakabayashi, K., Hoson, T. and Kamisaka, S. 1997. White light promotes the formation of diferulic acid in maize coleoptile cell walls by enhancing PAL activity. Physiol. Plant. 99 : 39-48.
  • Ralph, J., Quideau, S., Grabber, J.H. and Hatfield, R.D. 1994. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J. Chem. Soc. Perkin Trans. 1 : 3485-3498.
  • Raskin, I. and Kende, H. 1984a. Regulation of growth in stem sections of deep-water rice. Planta 160 : 66-72.
  • Raskin, I. and Kende, H. 1984b. Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 76 : 947-950.
  • Shibuya, N. 1984. Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochem. 23 : 2233-2237.
  • Tan, K.S., Hoson, T., Masuda, Y. and Kamisaka, S. 1991. Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls of Oryza sativa coleoptiles grown under water and in air. Physiol. Plant. 83 : 397-403.
  • Tan, K.S., Hoson, T., Masuda, Y. and Kamisaka, S. 1992a. Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol. 32 : 103-108.
  • Tan, K.S., Hoson, T., Masuda, Y. and Kamisaka, S. 1992b. Effect of ferulic and p-coumaric acid on Oryza coleoptile growth and the mechanical properties of cell walls. J. Plant Physiol. 140 : 460-465.