403
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Do P Cycling Patterns Differ Between Ice-Free Areas and Glacial Boundaries in the Maritime Antarctic Region?

, , , , , & show all
Pages 190-200 | Published online: 08 Jan 2018

References Cited

  • Aislabie, J. M. , Jordan, S. , and Barker, G. M. , 2008: Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma , 144: 9–20.
  • Almeida Delia, Del , P. M ., Machado, A. , Hansen, M. A. F. , Chemale, F., Jr ., Fensterseifer, H. C. , Petry, K. , and De Lima, L. , 2003: An igneous event at the Fildes Peninsula (King George Island) and around Fort Point (Greenwich Island), South Shetland Islands, Antarctica. Revista Brasileira de Geociências , 33: 339–348.
  • Barrett, J. E. , Virginia, R. A. , Parsons, A. N. , and Wall, D. H. , 2005: Potential soil organic matter turnover in Taylor Valley, Antarctica. Arctic, Antarctic, and Alpine Research , 37: 108–117.
  • Barrett, J. E. , Virginia, R. A. , Wall, D. H. , Cary, S. C. , Adams, B. J. , Hacker, A. L. , and Aislabie, J. M. , 2006: Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science , 18: 535–548.
  • Barrett, J. E. , Gooseff, M. N. , and Takacs-Vesbach, C. , 2009: Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems. Hydrology and Earth System Science , 13: 2358–2358.
  • Bate, D. B. , Barrett, J. E. , Poage, M. A. , and Virginia, R. A. , 2008: Soil phosphorus cycling in an Antarctic polar desert. Geoderma , 144: 21–31.
  • Beck, M. A. , and Elsenbeer, H. , 1999: Biogeochemical cycles of soil phosphorus in southern alpine Spodosols. Geoderma , 91: 249–260.
  • Bertrand, I. , Hinsinger, P. , Jaillard, B. , and Arvieu, J. C. , 1999: Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant and Soil , 211: 111–119.
  • Birkeland, P. W. , Burke, R. M. , and Benedict, J. B. , 1989: Pedogenic gradients for iron and aluminum accumulation and phosphorus depletion in arctic and alpine soils as a function of time and climate. Quaternary Research , 32: 193–204.
  • Blecker, S. W. , Ippolito, J. A. , Barrett, J. E. , Wall, D. H. , Virginia, R. A. , and Norvell, K. L. , 2006: Phosphorus fractions in soils of Taylor Valley, Antarctica. Soil Science Society of America Journal , 70: 806–815.
  • Bockheim, J. G. , Gennadiyev, A. N. , Hammer, R. D. , and Tandarich, J. P. , 2005: Historical development of key concepts in pedology. Geoderma , 124: 23–36.
  • Bölter, M. , 2011: Soil development and soil biology on King George Island, maritime Antarctic. Polish Polar Research , 32: 105–116.
  • Boyer, S. J. , 1975: Chemical weathering of rocks on the Lassiter Coast, Antarctic Peninsula, Antarctica. New Zealand Journal of Geology and Geophysics , 18: 623–628.
  • Burkins, M. B. , Virginia, R. A. , Chamberlain, C. P. , and . Wall, D. H. , 2000: Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology , 81: 2377–2391.
  • Burkins, M. B. , Virginia, R. A. , and Wall, D. H. , 2001: Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology , 7: 113–125.
  • Cannone, N. , Wagner, D. , Hubberten, H. W. , and Guglielmin, M. , 2008: Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma , 144: 50–65.
  • Chacón, N. , and Dezzeo, N. , 2004: Phosphorus fractions and sorption processes in soil samples taken in a forest-savanna sequence of the Gran Sabana in southern Venezuela. Biology and Fertility of Soils , 40: 14–19.
  • Chacón, N , Dezzeo, N. , Muñoz, B. , and Rodríguez, J. M.; 2005a: Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela. Biogeochemistry , 73: 555–566.
  • Chacón, N. , Dezzeo, N. , and Flores, S. , 2005b: Effect of particle-size distribution, soil organic carbon content and organo-mineral aluminium complexes on acid phosphatases of seasonally flooded forests soils. Biology and Fertility of Soils , 41: 69–72.
  • Chacón, N. , Dezzeo, N. , Rangel, M. , and Flores, S. , 2008: Seasonal changes in soil phosphorus dynamics and root mass along a flooded tropical forest gradient in the lower Orinoco River, Venezuela. Biogeochemistry , 87: 157–168.
  • Chen, B. J. , and Blume, H. P. , 1999: Study on the dynamics of soil moisture in an ice-free area of the Fildes Peninsula, King George Island, the maritime Antarctica. Polarforschung , 66: 11–18.
  • Chen, J. , and Blume, H. P. , 2000: Element enrichment and migration within some soils on Fildes Peninsula (King George Island), the maritime Antarctica. Journal of Plant Nutrition and Soil Science , 163: 291–297.
  • Cooper, A. W. , 1960: An example of the role of microclimate in soil genesis. Soil Science , 90: 109–120.
  • Dick, W. A. , and Tabatabai, M. A. , 1993: Significance and potential uses of soil enzymes. In Blaine, M. F. (ed.), Soil Microbial Ecology, Applications in Agriculture and Environmental Management. New York: Marcel Decker, 95–127.
  • Dore, J. E. , and Priscu, J. C. , 2001: Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo dry valley lakes, Antarctica. Limnology and Oceanography , 46: 1331–1346.
  • Egli, M. , Mirabella, A. , Sartori, G. , and Fitze, P. , 2003: Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps). Geoderma , 111: 99–121.
  • Egli, M. , Wernli, M. , Kneisel, Ch. , and Haeberli, W. , 2006a: Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): I. Soil Type chronosequence. Arctic, Antarctic, and Alpine Research , 38: 499–509.
  • Egli, M. , Mirabella, A. , Sartori, G. , Zanelli, R. , and Bischof, S. , 2006b: Effect of north and south exposure on weathering rates and clay mineral formation in alpine soils. Catena , 67: 155–174.
  • Eivazi, F. , and Tabatabai, M. A. , 1977: Phosphatases in soils. Soil Biology and Biochemistry , 9: 167–172.
  • Everett, K. R. , 1976: A survey of the soils in the region of the South Shetland Islands and adjacent part of the Antarctic Peninsula. Columbus: Ohio State University, Institute of Polar Studies, Report No. 58.
  • Ferron, F. A. , Simöes, C. , Aquino, F. E. , and Setzer, A. W. , 2004: Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira , 4: 155–169.
  • Gajananda, K. , 2007: Soil organic carbon and microbial activity: East Antarctica. European Journal of Soil Science , 58: 704–713.
  • Gerke, J. , and Hermann, R. , 1992: Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide. Zeitschrift für Pflanzenernähr Bodenkunde , 155: 233–236.
  • Gooseff, M. N. , Barrett, J. E. , Doran, P. T. , Fountain, A. G. , Lyons, W. B. , Parsons, A. N. , Porazinska, D. L. , Virginia, R. A. , and Wall, D. H. , 2003: Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research , 35: 91–99.
  • Green, V. S. , Stott, D. E. , and Diack, M. , 2006: Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry , 38: 693–701.
  • Hargrove, W. W. , and Pickering, J. , 1992: Pseudoreplication: a sine qua non for regional ecology. Landscape Ecology , 6: 251–258.
  • Hedley, M. J. , Stewart, J. W. B. , and Chauhan, B. S. , 1982: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal , 41: 970–976.
  • Hinsinger, P. , 2001: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil , 237: 173–195.
  • Hogg, I. D. , Cary, S. C. , Convey, P. , Newsham, K. K. , O'Donnell, A. G. , Adams, B. J. , Aislabie, J. , Frati, F. , Stevens, M. I. , and Wall, D. H. , 2006: Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor?. Soil Biology and Biochemistry , 38: 3035–3040.
  • Hopkins, D. W. , Sparrow, A. D. , Elberling, B. , Gregorich, E. G. , Novis, P. M. , Greenfield, L. G. , and Tilston, E. L. , 2006a: Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry , 38: 3130–3140.
  • Hopkins, D. W. , Sparrow, A. D. , Novis, P. M. , Gregorich, E. G. , Elberling, B. , and Greenfield, L. G. , 2006b: Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proceedings of the Royal Society, B273: 2687–2695.
  • Hopkins, D. W. , Sparrow, A. D. , Shillam, L. L. , English, L. C. , Dennis, P. G. , Novis, P. , Elberlin, G. B. , Gregorich, E. G. , and Greenfield, L. G. , 2008: Enzymatic activities and microbial communities in an Antarctica dry valley soil: response to C and N supplementation. Soil Biology and Biochemistry , 40: 2130–2136.
  • Hsu, H. , 1977: Aluminum oxides and oxyhydroxides. In Dixon, J. B. , and Weed, S. B. (eds.), Minerals in Soil Environments. Madison, Wisconsin: Soil Science Society of America, 99–143.
  • Huang, Q. , Shindo, H. , and Goh, T. B. , 1995: Adsorption, activities and kinetics of acid phosphatase as influenced by montmorillonite with different interlayer minerals. Soil Science , 159: 271–278.
  • Jenny, H. , 1941: Factors of Soil Formation. New York: McGraw-Hill.
  • Kelly, E. F. , and Yonker, C. M. , 2005: Factors of soil formation/time. In Hillel, D. , Rosenzweig, C. , Powlson, D. , Scot, K. , Singer, M. , and Sparks, D. (eds.), Encyclopedia of Soils in the Environment. New York: Columbia University Press, 536–539.
  • Kovach, W. L. , 1998: MVSP—A multivariate statistical package for Windows, version 3.0. Pentraeth, U.K.: Kovach Computing.
  • Kuzmann, E. , Schuch, L. A. , Garg, V. K. , De Souza, P. A., Jr ., Guimarães, E. M. , De Oliveira, A. C. , and Vértes, A. , 1998: Maritime Antarctica soils studied by Mössbauer spectroscopy and other methods. Brazilian Journal of Physics , 28: 434–443.
  • Lee, Y. I. , Lim, H. S. , and Yoon, H. I. , 2004: Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta , 68: 4319–4333.
  • Lillo, A. , Ramírez, H. , Reyes, F. , Ojeda, N , and Alvear, M. , 2011: Actividad biológica del suelo de bosque templado en un transecto altitudinal, parque nacional Conguillío (38°S), Chile. Bosque , 32: 46–56.
  • López-Martínez, J. , Serrano, E. , Schmid, T. , Mink, S. , and Linés, C. , 2012: Periglacial processes and landforms in the South Shetland Islands (Northern Antarctic Peninsula region). Geomorphology , 155–156: 62–79.
  • Matar, A. , Torrent, J. , and Ryan, J. , 1992: Soil and fertilizer phosphorus and crop responses in the dryland Mediterranean zone. Advances in Soil Sciences , 18: 81–146.
  • Matsuoka, N. , 1995: Rock weathering processes and landform development in the Sor Rondane Mountains, Antarctica. Geomorphology , 12: 323–339.
  • McKeague, J. A. , and Day, J. H. , 1966: Dithionite and oxalate extractable Fe and Al as aids differentiating various classes of soils. Canadian Journal of Soil Science , 46: 13–22.
  • McKeague, J. A. , 1967: An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionate in comparison with oxalate as extractants of the accumulation products in Podzols and some other soils. Canadian Journal of Soil Science , 47: 95–99.
  • Mehra, O. P. , and Jackson, M. L. , 1960: Iron oxide removal from soils and clays by a dithionate-citrate system buffered with sodium carbonate. Clays and Clay Minerals , 7: 317–327.
  • Motta, L. , and Motta, M. , 2004: Distribution and pattern of shallow melting at the local glaciers of Terra Nova Bay (Antarctica) coast. Annals of Glaciology , 39: 483–489.
  • Murphy, J. , and Riley, J. P. , 1962: A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta , 27: 31–36.
  • Nannipieri, P. , Ascher, J. , Ceccherini, M. T. , Landi, L. , Pietramellara, G. , and Renella, G. , 2003: Microbial diversity and soil functions. European Journal of Soil Science , 54: 655–670.
  • Navas, A. , López-Martínez, J. , Casas, J. , Machín, J. , Durán, J. J. , Serrano, E. , Cuchi, J. A. , and Mink, S. , 2008: Soil characteristics on varying lithological substrates in the South Shetland Islands, maritime Antarctica. Geoderma , 144: 123–139.
  • Oksanen, L. , 2001: Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos , 94: 27–38.
  • Parfitt, R. L. , 1978: Anion adsorption by soils and soil materials. Advances in Agronomy , 30: 1–50.
  • Parfitt, R. L. , 1989: Phosphate reactions with natural allophone, ferrihydrite and goethite. Journal of Soil Science , 40: 359–369.
  • Priscu, J. C. , 1995: Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biology , 34: 215–227.
  • Rao, M. A. , Gianfreda, L. , Palmiero, F. M. , and Violante, A. , 1996: Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Science , 16: 1751–1760.
  • Rao, M. A. , Violante, A. , and Gianfreda, L. , 2000: Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biology and Biochemistry , 32: 1007–1014.
  • Reyes, F. , Lillo, A. , Ojeda, N. , Reyes, M. , and Alvear, M. , 2011: Efecto de la exposición y la toposecuencia sobre actividades biológicas del suelo en bosque relicto del centro-sur de Chile. Bosque , 32: 255–265.
  • Schnürer, J. , and Rosswall, T. , 1982: Fluorescein diacetate hydrolysis as measure of total microbial activity in soil and litter. Applied Environmental Microbiology , 43: 1256–1261.
  • Schwertmann, U. , and Taylor, R. M. , 1977: Iron oxides. In Dixon, J. B. , and Weed, S. B. (eds.), Minerals in Soil Environments. Madison, Wisconsin: Soil Science Society of America, 145–180.
  • Shindo, H. , Watanabe, D. , Onaga, T. , Urakawa, M. , Nakahara, O. , and Huang, Q. , 2002: Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals. Soil Science and Plant Nutrition , 48: 763–767.
  • Sidari, M. , Ronzello, G. , Vecchio, G. , and Muscolo, A. , 2008: Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (southern Italy). European Journal of Soil Biology , 44: 364–372.
  • Sinsabaugh, R. L. , Lauber, Ch. L. , Weintraub, M. N. , Ahmed, B. , Allison, S. D. , Crenshaw, C. H. , Contosta, A. R. , Cusack, D. , Frey, S. , Gallo, M. E. , Gartner, T. B. , Hobbie, S. E. , Holland, K. , Keeler, B. L. , Powers, J. S. , Stursova, M. , Takacs-Vesbach, C. , Waldrop, M. P. , Wallenstein, M. D. , Zak, D. R. , and Zeglin, L. H. , 2008: Stoichiometry of soil enzyme activity at global scale. Ecology Letters , 11: 1252–1264.
  • Soave, G. E. , Coria, N. R. , Montalti, D. , and Curtosi, A. , 2000: Breeding flying birds in the region of the Fildes Peninsula, King George Island, South Shetland Islands, Antarctica, 1995/96. Marine Ornithology , 28: 37–40.
  • Statistica 2001. Statistica for Windows. Tulsa, Oklahoma: StatSoft, Inc.
  • Tabatabai, M. A. , and Bremner, J. M. , 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry , 1: 301–307.
  • Tiessen, H. , and Moir, J. O. , 1993: Characterization of available P by sequential extraction. In Carter, M. R. (ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, special publication, 75–86.
  • Tiessen, H. , Stewart, J. W. B. , and Moir, J. O. , 1983: Changes in organic and Pi composition of two grassland soils and their particle size fractions during 60-90 years of cultivation. Journal of Soil Science , 34: 815–823.
  • Tscherko, D. , Bölter, M. , Beyer, L. , Chen, J. , Elster, J. , Kandeler, E. , Kuhn, D. , and Blume, H. P. , 2003: Biomass and enzyme activity of two soil transects at King George Island, maritime Antarctica. Arctic, Antarctic, and Alpine Research , 35: 34–47.
  • Ugolini, F. C. , 1963: Soil investigations in the Lower Wright Valley, Antarctica. Permafrost International Conference. National Academy of Sciences, National Research Council Publication 1287: 55–61.
  • Ugolini, F. C. , and Bockheim, J. G. , 2008:. Antarctic soils and soil formation in a changing environment: a review. Geoderma , 144: 1–8.
  • Ugolini, F. C. , and Dahlgren, R. A. , 2002: Soil development in volcanic ash. Global Environmental Research , 6: 69–81.
  • Vitousek, P. M. , 1984: Literfall, nutrient cycling, and nutrient limitation in tropical forest. Ecology , 65: 285–298.
  • Vogt, S. , and Braun, M. , 2004: Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira , 4: 105–118.
  • Walker, T. W. , and Syers, J. K. , 1976: The fate of phosphorus during pedogenesis. Geoderma , 15: 1–19.
  • Wasley, J. , Robinson, S. A. , Lovelock, C. E. , and Popp, M. , 2006: Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology , 12: 1800–1812.
  • Wieder, R. K. , and Lang, G. E. , 1986: Fe, Al, Mn and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water, Air and Soil Pollution , 29: 309–320.
  • Zeglin, L. H. , Sinsabaugh, R. L. , Barrett, J. E. , Gooseff, M. N. , and Takacs-Vesbach, C. , 2009: Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology and geochemistry in a cold desert ecosystem. Ecosystems , 12: 562–573.
  • Zhao, Y. , and Li, T. , 1996: The pedogenic groups and diagnostic characteristics in the Fildes Peninsula of King George Island, Antarctica. Antarctic Research , 7: 70–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.