788
Views
1
CrossRef citations to date
0
Altmetric
Articles

Summer Activity Patterns of Antarctic and High Alpine Lichendominated Biological Soil Crusts—Similar But Different?

, , &
Pages 449-460 | Received 28 Jul 2015, Accepted 14 Mar 2016, Published online: 05 Jan 2018

References Cited

  • Auer, I. R. , Böhm, M. , Leymüller, S. , and Schöner, W. , 2002: Das Klima des Sonnblicks—Klimaatlas und Klimatographie der GAW Station Sonnblick einschließlich der umgebenden Gebirgsregion. Österreichische Beträge zur Meteorologie und Geophysik, 28: 1–408.
  • Bilger, W. , Schreiber, U. , and Bock, M. , 1995: Determination of the quantum efficiency of photosystem II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia , 102: 425–432.
  • Billings, W. D. , 1973: Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience , 23: 697–704.
  • Breen, K. , and Levesque, E. , 2008: The influence of biological soil crusts on soil characteristics along a High Arctic glacier foreland, Nunavut, Canada. Arctic, Antarctic, and Alpine Research , 40: 287–297.
  • Büdel, B. , Bendix, J. , Bicker, F. R. , and Green, T. G. A. , 2008: Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology , 44: 1415–1424.
  • Büdel, B. , Colesie, C. , Green, T. G. A. , Grube, M. , Suau, R. L. , Loewen-Schneider, K. , Maier, S. , Peer, T. , Pintado, A. , Raggio, J. , Ruprecht, U. , Sancho, L. G. , Schroeter, B. , Türk, R. , Weber, B. , Wedin, M. , Westberg, M. , Williams, L. , and Zheng, L. , 2014: Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation , 23: 1639–1658.
  • Colesie, C. , Gommeaux, M. , Green, T. G. A. and Büdel, B. , 2014: Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarctic Science , 22: 115–123, dot http://dx.doi.org/10.1017/S0954102013000291.
  • Flock, J. W. , 1978: Lichen-bryophyte distribution along a snow-cover—soil-moisture gradient, Niwot Ridge, Colorado. Arctic and Alpine Research , 10: 31–47.
  • Hansen, E. S. , 2003: Lichen-rich soil crusts or Arctic Greenland. In Belnap, J. , and Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, Volume 150, Second edition. Heidelberg, Berlin: Springer, 57–66.
  • Heber, U. , Bilger, W. , Bligny, R. and Lange, O. L. , 2000: Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta , 211: 770–780.
  • Gold, W. G. , Glew, K. A. , and Dickson, L. G. , 2001: Functional influences of cryptobiotic surface crusts in an alpine tundra basin of the Olympic Mountains, Washington, USA. Northwest Science , 73: 315–326.
  • Green, T. G. A. , 2008: Lichens in Arctic, Antarctic and alpine ecosystems. In Beck, A. ,and Lange, O. L. (eds.), Ökologische Rolle der Flechten. Rundgespräche der Kommission für Ökologie, Volume 36. Munich, Germany: Verlag Dr. Friedrich Pfeil, 45–66.
  • Green,T. G. A. , and Broady, P. A. , 2003: Biological soil crusts of Antarctica. In Belnap, J., and Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological studies, Vol 150, Second edition. Heidelberg, Berlin: Springer, 141–154.
  • Kappen, L. , 1988: Ecophysiological relationships in different climatic regions. In Galun, M. (ed.), Handbook of Lichenology, Volume 2. Boca Raton, Florida: CRC Press, 37–100.
  • Kappen, L. , 1990: Carbon dioxide exchange of Antarctic crustose lichens in situ measured with a CO2/H2O porometer. Oecologia, 82: 311–316.
  • Kappen, L. , 1993: Plant activity under snow and ice, with particular reference to lichens. Arctic , 46: 297–302.
  • Kappen, L. , 2000: Some aspects of the great success of lichens in Antarctica. Antarctic Science , 12: 314–324.
  • Kappen, L. , and Breuer, M. , 1991: Ecological and physiological investigations in continental Antarctic cryptogams, 2: moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarctic Science , 3: 273–278
  • Kappen, L. , and Redon, J. , 1987: Photosynthesis and water relations of three maritime Antarctic lichen species. Flora , 179: 215–229.
  • Kappen, L. , Breuer, M. , and Bolter, M. , 1991: Ecological and physiological investigations in continental Antarctic cryptogams. 3. Photosynthetic production of Usnea sphacelata: diurnal courses, models, and the effect of photoinhibition. Polar Biology , 11: 393–401.
  • Kappen, L. , Schroeter, B. , Green, T. G. A. , and Seppelt, R. D. , 1998: Microclimatic conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biology , 19: 101–106.
  • Körner, C. , 1998: A re-assessment of high elevation treeline positions and their explanation. Oecologia , 115: 445–459.
  • Lange, O. L. , 1965: Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta , 64: 1–19.
  • Lange, O. L. , 2003a: Photosynthesis of soil-crust biota as dependent on environmental factors. In Belnap, J. , and Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, Volume 150, Second edition. Heidelberg, Berlin: Springer, 217–241.
  • Lange, O. L. , 2003b: Photosynthetic productivity of the epilithic lichens Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: II. Diel and seasonal patterns of net photosynthesis and respiration. Flora , 198: 55–70.
  • Lange, O. L. , Tenhunen, J. D. , Harley, P. C. , and Walz, H. , 1985: Method for field measurements of CO2 exchange. The diurnal changes in net photosynthesis and photosynthetic capacity of lichens und meditarranean climatic conditions. In Brown, D. H. (ed.), Lichen Physiology and Cell Biology. New York, London: Plenum Press, 23–39.
  • Lange, O. L. , Kilian, E. , and Ziegler, H. , 1986: Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia , 71: 104–110.
  • Lange, O. L. , Büdel, B. , Heber, U. , Meyer, A. , Zellner, H. , and Green, T. G. A. , 1993: Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia , 95: 303–313.
  • Lange, O. L. , Meyer, A. , Zellner, H. , and Heber, U. , 1994: Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Functional Ecology , 8: 253–264.
  • Lange, O. L. , Green, T. G. A. , Reichenberger, H. , and Meyer, A. , 1996: Photosynthetic depression at high thallus water contents in lichens: concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species. Botanica Acta , 109: 43–50.
  • Lange, O. L. , Green, T. G. A. , Melzer, B. , Meyer, A. , and Zellner, H. , 2006: Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora , 201: 268–280.
  • Liengen, T. , 1999: Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from High Arctic habitats. Canadian Journal of Microbiology , 45: 223–229.
  • Øvstedal, D. O. , and Smith, R. I. , 2001: Lichens of Antarctica and South Georgia. A Guide to Their Identification and Ecology. Cambridge: Cambridge University Press.
  • Pannewitz, S. , Schiensog, M. , Green, T. G. A. , Sancho, L. , and Schroeter, B. , 2003: Are lichens active under snow in continental Antarctica. Oecologia , 135: 30–38.
  • Peer, T. , Türk, R. , Gruber, J. P. , and Tschaikner, A. , 2010: Species composition and pedological characteristics of biological soil crusts in a high alpine ecosystem. Hohe Tauern, Austria. eco.mont—Journal on Protected Mountain Areas Research , 2/1: 23–30.
  • Pérez, F. L. , 1997: Microbiotic crusts in the high equatorial Ancles, and their influence on paramo soils. Catena , 31: 173–198.
  • Raggio, J. , Green, T. G. A. , and Sancho, L. G. , 2015: In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: a comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biology , doi http://dx.doi.org/10.1007/s00300-015-1676-1 .
  • Reiter, R. , and Türk, R. , 2000a: Investigations on the CO2 exchange of lichens in the alpine belt. I. Comparative patterns of net CO2 exchange in Cladonia mitis, Thamnolia vermicularis and U. cylindrica. In >Schroeter, B. , Schlensog, M. , and Green, T. G. A. (eds.), New Aspects in Cryptogamic Research. Contributions in Honour of Ludger Kappen. Bibliotheca Lichenologia 75: 333–351.
  • Reiter, R. , and Türk, R. , 2000b: Investigations on the CO2 exchange of lichens in the alpine belt. II. Comparative patterns of net CO2 exchange in Cetraria islandica and Flavocetraria nivalis. Phyton , 40: 161–177.
  • Reiter, R. , Green, T. G. A. , Schroeter, B. , and Türk, R. , 2006: Photosynthesis of three lichens Umbilicaria species from lichen-dominated communities in the alpine/nival belt of the Alps measured under controlled conditions. Phyton , 46: 247–258.
  • Reiter, R. , Höftberger, M. , Green, T. G. A. , and Türk, R. , 2008: Photosynthesis of lichens from lichens dominated communities in the alpine/nival belt of the Alps—2: laboratory and field measurements of CO2 exchange and water relations. Flora , 203: 34–46.
  • Robinson, S. A. , Wasley, J. , and Tobin, A. K. , 2003: Living on the edge—plants and global change in continental and maritime Antarctica. Global Change Biology , 9: 1681–1717.
  • Sancho, L. G. , Pintado, A. , Valladares, F. , Schroeter, B. , and Schlensog, M. , 1997: Photosynthetic performance of cosmopolitan lichens in the maritime Antarctic. Bibliotheca Lichenologia , 67: 197–210.
  • Sancho, L. G. , Green, T. G. A. , and Pintado, A. , 2007: Slowest to fastest: extreme ragnge in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora , 202: 667–673.
  • Schlensog, M. , Pannewitz, S. , Green, T. G. A. , and Schroeter, B. , 2004: Metabolic recovery of continental Antarctic cryptogams after winter. Polar Biology , 27: 399–408.
  • Schlensog, M. , Green, T. G. A. , and Schroeter, B. , 2013: Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia , 173: 59–72.
  • Schmidt, S. K. , Lynch, R. C. , King, A. J. , Karki, D. , Robeson, M. S. , Nagy, L. , Williams, M.W , Mitter, M. S. , and Freeman, K. R. , 2011: Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proceedings of the Royal Society , 278: 702–708.
  • Schroeter, B. , Green, T. G. A. , Pannewitz, S. , Schlensog, M. , and Sancho, L. G. , 2010: Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarctic Science , 22: 681–690.
  • Schroeter, B. , Green, T. G. A. , Pannewitz, S. , Schlensog, M. , and Sancho, L. G. , 2011: Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biology , 34: 13–22.
  • Schroeter, B. , Green, T. G. A. , Kulle, D. , Pannewitz, S. , Schlensog, M. , and Sancho, L. G. , 2012: The moss Bryum argenteum var. muticum Brid. is well adapted to cope with high light in continental Antarctica. Antarctic Science , 24: 281–291.
  • Theurillat, J. P. , 1995: Climate change and the alpine flora: some perspectives. In Guisan, A. , Holten, J. I. , Spichiger, R. , and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandinavian Mountains. Geneva: Conservatoire at Jardin Botaniques, 121–127.
  • Türk, R. , and Gärtner, G. , 2003: Biological soil crusts of the subalpine, alpine and nival areas in the alps. In Belnap, J. , and Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, Volume 150, Second edition. Heidelberg, Berlin: Springer, 67–74.
  • Veste, M. , Littmann. T ., Friedrich, H. , and Breckle, S. W. , 2001: Microclimatic boundary conditions for activity of soil lichen crusts in the sand dunes of the north-western Negev desert, Israel. Flora , 196: 465–474.
  • Williams, L. , Borchhardt, N. , Colesie, C. , Baum, C. , KomsicBuchmann, K. , Rippin, M. , Becker, B. , Kartsen, U. , and Büdel, B. , 2016: Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biology : doi http://dx.doi.org/10.1007/s00300-016-1967-1 .
  • Yoshitake, S. , Uchida, M. , Koizumi, H. , and Nakatsubo, T. , 2010: Production of biological soil crusts in early stage of primary succession on a High Arctic glacier foreland. New Phytologist , 186: 451–460.
  • Zheng, L. J. , Maier, S. , Grube, M. , Türk, R. , Gruber, J. P. , and Peer, T. , 2014: Alpine biological soil crusts on the Hochtor (Grossglockner high alpine route, Hohe Tauern, Austria): soils, functions and biodiversity. Acta Zoo Bot Austria , 150: 175–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.