772
Views
7
CrossRef citations to date
0
Altmetric
Reports

Combining RNAi and in vivo confocal microscopy analysis of the photoconvertible fluorescent protein Dendra2 to study a DNA repair protein

, , &
Pages 198-203 | Received 05 Jul 2013, Accepted 07 Sep 2013, Published online: 03 Apr 2018

References

  • Schnell, U., F.Dijk, K.A.Sjollema, and B.N.Giepmans. 2012. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods9:152–158.
  • Lippincott-Schwartz, J. and G.H.Patterson. 2003. Development and use of fluorescent protein markers in living cells. Science300:87–91.
  • Cubitt, A.B., R.Heim, S.R.Adams, A.E.Boyd, L.A.Gross, and R.Y.Tsien. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci20:448–455.
  • Day, R.N. and M.W.Davidson. 2009. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev38:2887–2921.
  • Lippincott-Schwartz, J., N.Altan-Bonnet, and G.H.Patterson. 2003. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol10(Suppl):S7–S14.
  • Cole, N.B., C.L.Smith, N.Sciaky, M.Terasaki, M.Edidin, and J.Lippincott-Schwartz. 1996. Diffusional mobility of Golgi proteins in membranes of living cells. Science273:797–801.
  • Terskikh, A., A.Fradkov, G.Ermakova, A.Zaraisky, P.Tan, A.V.Kajava, X.Zhao, S.Lukyanov, et al.. 2000. “Fluorescent timer”: protein that changes color with time. Science290:1585–1588.
  • Zhou, P. 2004. Determining protein half-lives. Methods Mol. Biol284:67–77.
  • Schneider-Poetsch, T., J.Ju, D.E.Eyler, Y.Dang, S.Bhat, W.C.Merrick, R.Green, B.Shen, and J.O.Liu. 2010. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol6:209–217.
  • Martin, S.J., S.V.Lennon, A.M.Bonham, and T.G.Cotter. 1990. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol145:1859–1867.
  • Patterson, G.H. and J.Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science297:1873–1877.
  • Gurskaya, N.G., V.V.Verkhusha, A.S.Shcheglov, D.B.Staroverov, T.V.Chepurnykh, A.F.Fradkov, S.Lukyanov, and K.A.Lukyanov. 2006. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol24:461–465.
  • Baker, S.M., R.W.Buckheit, 3rd, and M.M.Falk. 2010. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol11:15.
  • Izumi, T., D.B.Brown, C.V.Naidu, K.K.Bhakat, M.A.Macinnes, H.Saito, D.J.Chen, and S.Mitra. 2005. Two essential but distinct functions of the mammalian abasic endonuclease. Proc. Natl. Acad. Sci. USA102:5739–5743.
  • Myles, G.M. and A.Sancar. 1989. DNA repair. Chem. Res. Toxicol2:197–226.
  • Xanthoudakis, S., G.G.Miao, and T.Curran. 1994. The redox and DNA-repair activities of Ref-1 are encoded by non overlapping domains. Proc. Natl. Acad. Sci. USA91:23–27.
  • Tell, G., F.Quadrifoglio, C.Tiribelli, and M.R.Kelley. 2009. The many functions of APE1/Ref-1: not only a DNA-repair enzyme. Antioxid. Redox Signal11:601–620.
  • Kuninger, D.T., T.Izumi, J.Papaconstantinou, and S.Mitra. 2002. Human AP-endonuclease 1 and hnRNP-L interact with a nCaRE-like repressor element in the AP-endonuclease 1 promoter. Nucleic Acids Res.30:823–829.
  • Vascotto, C., L.Cesaratto, L.A.Zeef, M.Deganuto, C.D’Ambrosio, A.Scaloni, M.Romanello, G.Damante, et al.. 2009. Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells. Proteomics9:1058–1074.
  • Tell, G., G.Damante, D.Caldwell, and M.R.Kelley. 2005. The intracellular localization of APE1/Ref-1: more than a passive phenomenon?Antioxid. Redox Signal7:367–384.
  • Tell, G., D.Fantini, and F.Quadrifoglio. 2010. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell. Mol. Life Sci67:3589–3608.
  • Stuart, J.A., K.Hashiguchi, D.M.Wilson, 3rd, W.C.Copeland, N.C.Souza-Pinto, and V.A.Bohr. 2004. DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA. Nucleic Acids Res.32:2181–2192.
  • Zhang, L., N.G.Gurskaya, E.M.Merzlyak, D.B.Staroverov, N.N.Mudrik, O.N.Samarkina, L.M.Vinokurov, S.Lukyanov, et al.. 2007. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques42:446–450.
  • Vascotto, C., L.Cesaratto, L.A.Zeef, M.Deganuto, C.D’Ambrosio, A.Scaloni, M.Romanello, G.Damante, et al.. 2009. Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells. Proteomics9:1058–1074.
  • Kreklau, E.L., M.Limp-Foster, N.Liu, Y.Xu, M.R.Kelley, and L.C.Erickson. 2001. A novel fluorometric oligonucleotide assay to measure O(6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res.29:2558–2566.
  • Vascotto, C., E.Bisetto, M.Li, L.A.Zeef, C.D’Ambrosio, R.Domenis, M.Comelli, D.Delneri, et al.. 2011. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol. Biol. Cell22:3887–3901.
  • Vascotto, C. and M.L.Fishel. 2012. Blockade of Base Excision Repair: Inhibition of Small Lesions Results in Big Consequences to Cancer Cells, p. 29–53. In Mark R.Kelley(Ed.), DNA Repair in Cancer Therapy: Molecular Targets and Clinical Applications. Academic Press Elsevier Inc., San Diego, CA.