2,366
Views
7
CrossRef citations to date
0
Altmetric
Reports

Robust Evaluation of Intermolecular FRET Using a Large Stokes Shift Fluorophore as a Donor

, , &
Pages 211-218 | Received 09 Apr 2018, Accepted 13 Jul 2018, Published online: 04 Oct 2018

References

  • Romero F , Santana-CalvoC, Sánchez-GuevaraY, NishigakiT. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP. FEBS Letters591, 2869–2878 (2017).
  • Scott SP , SheaPW, DryerSE. Mapping ligand interactions with the hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel binding domain using a soluble construct. Biochemistry46(33), 9417–9431 (2007).
  • Tsalkova T , MeiFC, ChengX. A fluorescence-based high-throughput assay for the discovery of exchange protein directly activated by cyclic AMP (EPAC) antagonists. PloS One7(1), e30441 (2012).
  • Piston DW , KremersG-J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci.32(9), 407–414 (2007).
  • Zal T , GascoigneNRJ. Photobleaching-corrected FRET efficiency imaging of live cells. Biophysical. J.86(6), 3923–3939 (2004).
  • Erickson MG , AlseikhanBA, PetersonBZ, YueDT. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron31, 973–985 (2001).
  • Zapata-Hommer O , GriesbeckO. Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol.3(1), 5 (2003).
  • Ai H-W , HazelwoodKL, DavidsonMW, CampbellRE. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat. Methods5(5), 401–403 (2008).
  • Laviv T , KimBB, ChuJ, LamAJ, LinMZ, YasudaR. Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. Nat. Methods13(12), 989–992 (2016).
  • Shcherbakova DM , HinkMA, JoosenL, GadellaTWJ, VerkhushaVV. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J. Am. Chem. Soc.134(18), 7913–7923 (2012).
  • Niino Y , HottaK, OkaK. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PloS One4(6), e6036 (2009).
  • Ding Y , AiH, HoiH, CampbellRE. Förster resonance energy transfer-based biosensors for multiparameter ratiometric imaging of Ca2+ dynamics and caspase-3 activity in single cells. Anal. Chem.83(24), 9687–9693 (2011).
  • Heim R , PrasherDC, TsienRY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA91(26), 12501–12504 (1994).
  • Lakowicz JR . Energy transfer. In: Principles of Fluorescence Spectroscopy. Springer, 443–475 (2006).
  • Kusch J , BiskupC, ThonSet al. Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron67(1), 75–85 (2010).
  • Cooper M , EbnerA, BriggsMet al. Cy3B (TM): Improving the performance of cyanine dyes. J. Fluorescence14(2), 145–150 (2004).
  • Linck L , KapustaP, Resch-GengerU. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats. Photochem. Photobiol.88(4), 867–875 (2012).
  • De Rooij J , RehmannH, Van TriestM, CoolRH, WittinghoferA, BosJL. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J. Biol. Chem.275(27), 20829–20836 (2000).
  • Liu Z , SongF, SongBet al. A FRET chemosensor for hypochlorite with large Stokes shifts and long-lifetime emissions. Sens. Actuators B. Chem.262, 958–965 (2018).
  • Cubitt AB , WoollenweberLA, HeimR. Chapter 2: Understanding structure–function relationships in the aequorea victoria green fluorescent protein. In: Green Fluorescent Proteins. SullivanKF, KaySA (Eds). Elsevier, NY, USA, 19–30 (1998).
  • Kellogg RE , BennettRG. Radiationless intermolecular energy transfer. III. Determination of phosphorescence efficiencies. J. Chem. Phys.41(10), 3042–3045 (1964).