55,219
Views
140
CrossRef citations to date
0
Altmetric
Review

PCR Past, Present and Future

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 317-325 | Received 27 Apr 2020, Accepted 16 Jul 2020, Published online: 20 Aug 2020

References

  • Sanger F , NicklenS, CoulsonAR. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA74(12), 5463–5467 (1977).
  • Mullis K , FaloonaF, ScharfS, SaikiR, HornG, ErlichH. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol.51(Pt. 1), 263–273 (1986).
  • Saiki RK , ScharfS, FaloonaFet al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science230(4732), 1350–1354 (1985).
  • Hurd C , CavanaghG, SchuhA, OuwehandW, MetcalfeP. Genotyping for platelet-specific antigens: techniques for the detection of single nucleotide polymorphisms. Vox Sang.83(1), 1–12 (2002).
  • Chamberlain JS , GibbsRA, RainerJE, NguyenPN, ThomasC. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res.16(23), 11141–11156 (1988).
  • Butler JM , BuelE, CrivellenteF, McCordBR. Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis25(10–11), 1397–1412 (2004).
  • Kloosterman AD , BudowleB, DaselaarP. PCR-amplification and detection of the human D1S80 VNTR locus. Int. J. Legal Med.105(5), 257–264 (1993).
  • Saiki RK , GelfandDH, StoffelSet al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science239(4839), 487–491 (1988).
  • Bartlett JM , StirlingD. A short history of the polymerase chain reaction. In: PCR Protocols. BartlettJMS, StirlingD (Eds). Humana Press, NY, USA, 3–6, Methods in Molecular Biology, Vol. 226. (2003).
  • Schiffman M , BauerH, LorinczAet al. Comparison of Southern blot hybridization and polymerase chain reaction methods for the detection of human papillomavirus DNA. J. Clin. Microbiol.29(3), 573–577 (1991).
  • Embury SH , ScharfSJ, SaikiRKet al. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. N. Engl. J. Med.316(11), 656–661 (1987).
  • Saiki RK , BugawanTL, HornGT, MullisKB, ErlichHA. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature324(6093), 163–166 (1986).
  • Saiki RK , ChangC-A, LevensonCHet al. Diagnosis of sickle cell anemia and β-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N. Engl. J. Med.319(9), 537–541 (1988).
  • Lebo RV , SaikiRK, SwansonK, MontanoMA, ErlichHA, GolbusMS. Prenatal diagnosis of alpha-thalassemia by polymerase chain reaction and dual restriction enzyme analysis. Hum. Genet.85(3), 293–299 (1990).
  • Beggs AH , KoenigM, BoyceFM, KunkelLM. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet.86(1), 45–48 (1990).
  • Cassol SA , PoonMC, PalRet al. Primer-mediated enzymatic amplification of cytomegalovirus (CMV) DNA. Application to the early diagnosis of CMV infection in marrow transplant recipients. J. Clin. Invest.83(4), 1109–1115 (1989).
  • Olive DM . Detection of enterotoxigenic Escherichia coli after polymerase chain reaction amplification with a thermostable DNA polymerase. J. Clin. Microbiol.27(2), 261–265 (1989).
  • Zeldis JB , LeeJH, MamishDet al. Direct method for detecting small quantities of hepatitis B virus DNA in serum and plasma using the polymerase chain reaction. J. Clin. Invest.84(5), 1503–1508 (1989).
  • Kwok S , MackDH, MullisKBet al. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J. Virol.61(5), 1690–1694 (1987).
  • Ou CY , KwokS, MitchellSWet al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science239(4837), 295–297 (1988).
  • Wormser GP , JolineC, BittkerS, ForseterG, KwokS, SninskyJJ. Polymerase chain reaction for seronegative health care workers with parenteral exposure to HIV-infected patients. N. Engl. J. Med.321(24), 1681–1682 (1989).
  • Mellars G , JenkinsPV, PerryDJ. Multiplex PCR for detection of the prothrombin 3′-UTR (G20210A) polymorphism and the factor V leiden mutation. In: Hemostasis and Thrombosis Protocols. PasiKJ, PerryDJ (Eds). Humana Press, NY, USA, 287–289, Methods in Molecular Biology, Vol. 31 (1999).
  • Stahlberg A , KrzyzanowskiPM, EgyudM, FilgesS, SteinL, GodfreyTE. Simple multiplexed PCR-based barcoding of DNA for ultrasensitive mutation detection by next-generation sequencing. Nat. Protoc.12(4), 664–682 (2017).
  • Hickman MP , GrisedaleKS, BintzBJet al. Recovery of whole mitochondrial genome from compromised samples via multiplex PCR and massively parallel sequencing. Future Sci. OA4(9), FSO336 (2018).
  • Boehnke M , ArnheimN, LiH, CollinsFS. Fine-structure genetic mapping of human chromosomes using the polymerase chain reaction on single sperm: experimental design considerations. Am. J. Hum. Genet.45(1), 21–32 (1989).
  • Jeffreys AJ , WilsonV, NeumannR, KeyteJ. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res.16(23), 10953–10971 (1988).
  • Encyclopedia of Forensic Sciences (2nd Edition). SiegelJA, SaukkoPJ, HouckMM (Eds). Academic Press, MA, USA (2013).
  • Ladas I , YuF, LeongKWet al. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res.46(12), e74 (2018).
  • Higuchi R , FocklerC, DollingerG, WatsonR. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology11(9), 1026–1030 (1993).
  • Becker-Andre M , HahlbrockK. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res.17(22), 9437–9446 (1989).
  • Chelly J , KaplanJC, MaireP, GautronS, KahnA. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature333(6176), 858–860 (1988).
  • Bustin SA , BenesV, GarsonJAet al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55(4), 611–622 (2009).
  • Quan P-L , SauzadeM, BrouzesE. dPCR: a technology review. Sensors18(4), 1271 (2018).
  • Shin Y , KimJ, LeeTY. A solid phase-bridge based DNA amplification technique with fluorescence signal enhancement for detection of cancer biomarkers. Sensor Actuat. B-Chem.199, 220–225 (2014).
  • Kopp MU , de MelloAJ, ManzA. Chemical amplification: continuous-flow PCR on a chip. Science280(5366), 1046–1048 (1998).
  • Northrup MA , ChingMT, WhiteRM, WatsonRT. DNA amplification with a microfabricated reaction chamber. Presented at: Transducer ‘93: the 7th International Conference on Solid-State Sensors and Actuators. Yokohama, Japan, 7–10 June 1993.
  • Streets AM , HuangY. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotech.25, 69–77 (2014).
  • Rival A , JaryD, DelattreCet al. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip14(19), 3739–3749 (2014).
  • Hwang B , LeeJH, BangD. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med.50(8), 96 (2018).
  • Shao H , ChungJ, LeeKet al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun.6, 6999 (2015).
  • Farrar JS , WittwerCT. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin. Chem.61(1), 145 (2015).
  • Neuzil P , PipperJ, HsiehTM. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst.2(6–7), 292–298 (2006).
  • Ahrberg CD , IlicBR, ManzA, NeužilP. Handheld real-time PCR device. Lab Chip16(3), 586–592 (2016).
  • Ahrberg CD , ManzA, NeuźilP. Palm-sized device for point-of-care Ebola detection. Anal. Chem.88(9), 4803–4807 (2016).
  • Vogelstein B , KinzlerKW. Digital PCR. Proc. Natl Acad. Sci. USA96(16), 9236–9241 (1999).
  • Madic J , ZocevicA, SenlisVet al. Three-color crystal digital PCR. Biomol. Detect. Quant.10, 34–46 (2016).
  • Hindson CM , ChevilletJR, BriggsHAet al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods10, 1003 (2013).
  • Li H , ZhangH, XuYet al. Versatile digital polymerase chain reaction chip design, fabrication and image processing. Sens. Actuators B Chem.283, 677–684 (2019).
  • Zhu Q , XuY, QiuLet al. A scalable self-priming fractal branching microchannel net chip for digital PCR. Lab Chip17(9), 1655–1665 (2017).
  • Thompson AM , GansenA, PaguiriganAL, KreutzJE, RadichJP, ChiuDT. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells. Anal. Chem.86(24), 12308–12314 (2014).
  • Guiducci C , SpigaFM. Another transistor-based revolution: on-chip qPCR. Nat. Methods10, 617 (2013).
  • Notomi T , OkayamaH, MasubuchiHet al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res.28(12), E63 (2000).
  • Toldra A , Jauset-RubioM, AndreeKBet al. Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal. Chim. Acta1039, 140–148 (2018).
  • Zhou W , HuL, YingL, ZhaoZ, ChuPK, YuX-F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun.9(1), 1–11 (2018).
  • Kellner MJ , KoobJG, GootenbergJS, AbudayyehOO, ZhangF. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc.14(10), 2986–3012 (2019).
  • Wang Q , ZhangB, XuX, LongF, WangJ. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method. Sci. Rep.8(1), 1–13 (2018).
  • Metzker ML . Sequencing technologies—the next generation. Nat. Rev. Genet.11(1), 31–46 (2009).
  • Voelkerding KV , DamesSA, DurtschiJD. Next-generation sequencing: from basic research to diagnostics. Clin. Chem.55(4), 641–658 (2009).
  • Quail MA , SmithM, CouplandPet al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom.13(1), 341 (2012).
  • Sidstedt M , RådströmP, HedmanJ. PCR inhibition in qPCR, dPCR and MPS – mechanisms and solutions. Anal. Bioanal. Chem.412, 2009–2023 (2020).
  • Das A , SpackmanE, Pantin-JackwoodMJ, SuarezDL. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of Avian influenza virus by RT-PCR. J. Vet. Diagn. Invest.21(6), 771–778 (2009).
  • Hu Q , LiuY, YiS, HuangD. A comparison of four methods for PCR inhibitor removal. Forensic Sci. Int. Genet.16, 94–97 (2015).
  • Kermekchiev MB , KirilovaLI, VailEE, BarnesWM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res.37(5), e40–e40 (2009).
  • Strien J , SanftJ, MallG. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences. Mol. Biotechnol.54(3), 1048–1054 (2013).
  • Green MR , SambrookJ. Polymerase chain reaction (PCR) amplification of GC-rich templates. Cold Spring Harb. Protoc.2019(2), pdb. prot095141 (2019).
  • Ahrberg CD , ManzA, NeuzilP. Palm-sized device for point-of-care ebola detection. Anal. Chem.88(9), 4803–4807 (2016).
  • Jain M , OlsenHE, PatenB, AkesonM. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol.17(1), 239 (2016).
  • Tian H , SunY, LiuC, DuanX, TangW, LiZ. Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction. Anal. Chem.88(23), 11384–11389 (2016).
  • Rhein J , BahrNC, HemmertACet al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn. Micr. Infec. Dis.84(3), 268–273 (2016).
  • Hiltunen J , LiedertC, HiltunenMet al. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification. Lab Chip18(11), 1552–1559 (2018).
  • Cornelis S , FauvartM, GansemansYet al. Multiplex STR amplification sensitivity in a silicon microchip. Sci. Rep.8(1), 9853 (2018).
  • Kanwar N , MichaelJ, DoranK, MontgomeryE, SelvaranganR. Comparison of the ID Now influenza A & B 2, Cobas influenza A/B and Xpert Xpress Flu point-of-care nucleic acid amplification tests for influenza A/B virus detection in children. J. Clin. Microbiol.58(3), e01611–e01619 (2020).
  • Melchers WJ , KuijpersJ, SicklerJJ, Rahamat-LangendoenJ. Lab-in-a-tube: real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol.89(8), 1382–1386 (2017).
  • US Food and Drug Administration . Coronavirus disease 2019 (COVID-19) emergency use authorizations for medical devices. http://www.fda.gov/medical-devices/emergency-use-authorizations-medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices
  • Gou T , HuJ, WuWet al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens. Bioelectron.120, 144–152 (2018).
  • Zhu H , PodesvaP, LiuXet al. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators B Chem.303, 127098 (2020).
  • Sorek N , AshkenaziS, LivniG, Ben-ZviH. Neisseria meningitidis and cytomegalovirus simultaneous detection in the filmarray meningitis/encephalitis panel and its clinical relevance. IDCases17, e00516 (2019).
  • Cornelis S , TytgatO, FauvartMet al. Silicon μPCR chip for forensic STR profiling with HyBeacon probe melting curves. Sci. Rep.9(1), 7341–7312 (2019).