2,895
Views
6
CrossRef citations to date
0
Altmetric
Perspective

DNA Double-Strand Break Formation and Repair as Targets for Novel Antibiotic Combination Chemotherapy

& ORCID Icon
Article: FSO411 | Received 14 Mar 2019, Accepted 02 Jul 2019, Published online: 02 Sep 2019

References

  • GouldIM , BalAM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence4(2), 185–191 (2013).
  • SenguptaS , ChattopadhyayMK , GrossartHP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol.4, 47 (2013).
  • WrightGD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can. J. Microbiol.60(3), 147–154 (2014).
  • BassettiM , GinocchioF , MikulskaM. New treatment options against Gram-negative organisms. Crit. Care15(2), 215 (2011).
  • VentolaCL. The antibiotic resistance crisis: part 1: causes and threats. PT40(4), 277–283 (2015).
  • DalhoffA. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis.2012, 976273 (2012).
  • HuttelS , TestolinG , HerrmannJet al.Discovery and total synthesis of natural cystobactamid derivatives with superior activity against Gram-negative pathogens. Angew. Chem. Int. Ed. Engl.56(41), 12760–12764 (2017).
  • ClardyJ , FischbachMA , CurrieCR. The natural history of antibiotics. Curr. Biol.19(11), R437–441 (2009).
  • EykelenboomJK , BlackwoodJK , OkelyE , LeachDR. SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol. Cell29(5), 644–651 (2008).
  • DrlicaK , MalikM , KernsRJ , ZhaoX. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother.52(2), 385–392 (2008).
  • FlossHG , YuTW. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev.105(2), 621–632 (2005).
  • TomaszA. The mechanism of the irreversible antimicrobial effects of penicillins: how the β-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol.33, 113–137 (1979).
  • VakulenkoSB , MobasheryS. Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev.16(3), 430–450 (2003).
  • HerrmannJ , LukezicT , KlingAet al.Strategies for the discovery and development of new antibiotics from natural products: three case studies. Curr. Top Microbiol. Immunol.398, 339–363 (2016).
  • HooperDC. Mode of action of fluoroquinolones. Drugs58(Suppl. 2), 6–10 (1999).
  • HooperDC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin. Infect. Dis.32(Suppl. 1), S9–S15 (2001).
  • AndersonVE , OsheroffN. Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des.7(5), 337–353 (2001).
  • WohlkonigA , ChanPF , FosberryAPet al.Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat. Struct. Mol. Biol.17(9), 1152–1153 (2010).
  • LevineC , HiasaH , MariansKJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta1400(1–3), 29–43 (1998).
  • JacobyGA. Mechanisms of resistance to quinolones. Clin. Infect. Dis.41(Suppl. 2), S120–126 (2005).
  • HooperDC , JacobyGA. Mechanisms of drug resistance: quinolone resistance. Ann. NY Acad. Sci.1354, 12–31 (2015).
  • NeuhauserMM , WeinsteinRA , RydmanR , DanzigerLH , KaramG , QuinnJP. Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA289(7), 885–888 (2003).
  • MauriceCF , HaiserHJ , TurnbaughPJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell152(1-2), 39–50 (2013).
  • PenningtonJM , RosenbergSM. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet.39(6), 797–802 (2007).
  • KowalczykowskiSC , DixonDA , EgglestonAK , LauderSD , RehrauerWM. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev.58(3), 401–465 (1994).
  • ChayotR , MontagneB , MazelD , RicchettiM. An end-joining repair mechanism in Escherichia coli. Proc. Natl Acad. Sci. USA107(5), 2141–2146 (2010).
  • WilsonTE , TopperLM , PalmbosPL. Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem. Sci.28(2), 62–66 (2003).
  • LenhartJS , SchroederJW , WalshBW , SimmonsLA. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev.76(3), 530–564 (2012).
  • MoellerR , StackebrandtE , ReitzGet al.Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J. Bacteriol.189(8), 3306–3311 (2007).
  • PitcherRS , GreenAJ , BrzostekA , Korycka-MachalaM , DziadekJ , DohertyAJ. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst.)6(9), 1271–1276 (2007).
  • GuptaR , BarkanD , Redelman-SidiG , ShumanS , GlickmanMS. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol. Microbiol.79(2), 316–330 (2011).
  • Fishman-LobellJ , RudinN , HaberJE. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell Biol.12(3), 1292–1303 (1992).
  • RodgersK , McVeyM. Error-prone repair of DNA double-strand breaks. J. Cell Physiol.231(1), 15–24 (2016).
  • DillinghamMS , KowalczykowskiSC. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev.72(4), 642–671 (2008).
  • SmithGR. How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view. Microbiol. Mol. Biol. Rev.76(2), 217–228 (2012).
  • KowalczykowskiSC , EgglestonAK. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem.63, 991–1043 (1994).
  • RocaAI , CoxMM. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol.56, 129–223 (1997).
  • SzostakJW , Orr-WeaverTL , RothsteinRJ , StahlFW. The double-strand-break repair model for recombination. Cell33(1), 25–35 (1983).
  • CromieGA , LeachDR. Control of crossing over. Mol. Cell6(4), 815–826 (2000).
  • PerskyNS , LovettST. Mechanisms of recombination: lessons from E. coli. Crit. Rev. Biochem. Mol. Biol.43(6), 347–370 (2008).
  • MawerJS , LeachDR. Branch migration prevents DNA loss during double-strand break repair. PLoS Genet.10(8), e1004485 (2014).
  • AlonsoJC , CardenasPP , SanchezH , HejnaJ , SuzukiY , TakeyasuK. Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst.)12(3), 162–176 (2013).
  • AyoraS , CarrascoB , CardenasPPet al.Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol. Rev.35(6), 1055–1081 (2011).
  • LinJ , ZhouD , SteitzTA , PolikanovYS , GagnonMG. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem.87, 451–478 (2018).
  • KohanskiMA , DwyerDJ , CollinsJJ. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol.8(6), 423–435 (2010).
  • DeitzWH , CookTM , GossWA. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality. J. Bacteriol.91(2), 768–773 (1966).
  • LewinCS , AmyesSG. The bactericidal activity of DR-3355, an optically active isomer of ofloxacin. J. Med. Microbiol.30(3), 227–231 (1989).
  • LewinCS , AmyesSG. Conditions required for the bactericidal activity of fleroxacin and pefloxacin against Escherichia coli KL 16. J. Med. Microbiol.32(2), 83–86 (1990).
  • LewinCS , HowardBM , SmithJT. Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. J. Med. Microbiol.34(1), 19–22 (1991).
  • PiddockLJ , WaltersRN , DiverJM. Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli. Antimicrob. Agents Chemother.34(12), 2331–2336 (1990).
  • DiverJM , WiseR. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J. Antimicrob. Chemother.18(Suppl. D), 31–41 (1986).
  • MichelB. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol.3(7), e255 (2005).
  • PiddockLJ , WaltersRN. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob. Agents Chemother.36(4), 819–825 (1992).
  • HowardBM , PinneyRJ , SmithJT. Function of the SOS process in repair of DNA damage induced by modern 4-quinolones. J. Pharm. Pharmacol.45(7), 658–662 (1993).
  • CulybaMJ , MoCY , KohliRM. Targets for combating the evolution of acquired antibiotic resistance. Biochemistry54(23), 3573–3582 (2015).
  • DorrT , LewisK , VulicM. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet.5(12), e1000760 (2009).