16,858
Views
95
CrossRef citations to date
0
Altmetric
Review

A Review on Bacterial Resistance to Carbapenems: epidemiology, Detection and Treatment Options

& ORCID Icon
Article: FSO438 | Received 28 Aug 2019, Accepted 22 Oct 2019, Published online: 27 Jan 2020

References

  • Antimicrobial Resistance in Developing Countries.SosaA de J, ByarugabaDK, AmabileC, HsuehPR, KariukiS, OkekeIN ( Eds). Springer, NY, USA (2010).
  • SugdenR , KellyR , DaviesS. Combatting antimicrobial resistance globally. Nat. Microbiol.1(10), 16187 (2016).
  • WHO. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017–2018 (2018). www.apps.who.int/iris/bitstream/handle/10665/279656/9789241515061-eng.pdf?ua=1
  • HolmesAH , MooreLSP , SundsfjordAet al.Understanding the mechanisms and drivers of antimicrobial resistance. Lancet387(10014), 176–187 (2016).
  • TenoverFC. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control34(5), S3–S10 (2006).
  • WalshC. Molecular mechanisms that confer antibacterial drug resistance. Nature406(6797), 775–781 (2000).
  • BruntonLL , KnollmannBC , Hilal-DandanR. Goodman & Gilman's the pharmacological basis of therapeutics (13th Edition). ShanahanJF, LebowitzH ( Ed.). McGraw Hill Medical, NY, USA (2018).
  • WalshC. Antibiotics: actions, origins, resistance. ASM Press, Washington DC, USA (2003).
  • El-GamalMI , BrahimI , HishamN , AladdinR , MohammedH , BahaaeldinA. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem.131, 185–195 (2017).
  • MeletisG. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis.3(1), 15–21 (2016).
  • BirnbaumJ , KahanFM , KroppH , MacdonaldJS. Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. Am. J. Med.78(6), 3–21 (1985).
  • KahanJS , KahanFM , GoegelmanRet al.Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. (Tokyo)32(1), 1–12 (1979).
  • LeeY , BradleyN. Overview and insights into Carbapenem allergy. Pharmacy7(3), 110–116 (2019).
  • FoyeWO , LemkeTL , WilliamsDA. Foye's Principles of Medicinal Chemistry (7th Edition). Wolters Kluwer Health/Lippincott Williams & Wilkins, PA, USA (2013).
  • GraysonML. Kucers' the Use of Antibiotics: a Clinical Review of Antibacterial, Antifungal, Antiparasitic and Antiviral Drugs (6th Edition). CRC Press, FL, USA (2012).
  • BuckleyMM , BrogdenRN , BarradellLB , GoaKL. Imipenem/Cilastatin. Drugs44(3), 408–444 (1992).
  • FischerJ , GanellinCR. Analogue-based drug discovery (6th Edition). Wiley-VCH, Weinheim, Germany (2006).
  • NordmannP , DortetL , PoirelL. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med.18(5), 263–272 (2012).
  • EllappanK , BelgodeNarasimha H , KumarS. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J. Glob. Antimicrob. Resist.12, 37–43 (2018).
  • ElshamyA , AboshanabK , YassienM , HassounaN. Prevalence of carbapenem resistance among multidrug-resistant Gram-negative uropathogens. Arch. Pharm. Sci. Ain Shams Univ.2(2), 70–77 (2018).
  • ZhanelGG , WiebeR , DilayLet al.Comparative review of the carbapenems. Drugs67(7), 1027–1052 (2007).
  • SolomkinJS , MazuskiJE , BradleyJSet al.Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis.50(2), 133–164 (2010).
  • Papp-WallaceKM , EndimianiA , TaracilaMA , BonomoRA. Carbapenems: past, present, and future. Antimicrob. Agents Chemother.55(11), 4943–4960 (2011).
  • FisherJF , MerouehSO , MobasheryS. Bacterial resistance to β-Lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev.105(2), 395–424 (2005).
  • KapoorG , SaigalS , ElongavanA. Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol.33(3), 300–305 (2017).
  • HeijenoortJv. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology11, 25R–36R (2001).
  • ScholarEM , PrattWB. The Antimicrobial Drugs (2nd Edition). Oxford University Press, NY, USA (2000).
  • NordmannP , NaasT , PoirelL. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis.17(10), 1791–1798 (2011).
  • BlairJMA , WebberMA , BaylayAJ , OgboluDO , PiddockLJV. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol.13(1), 42–51 (2015).
  • TzouvelekisLS , MarkogiannakisA , PsichogiouM , TassiosPT , DaikosGL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev.25(4), 682–707 (2012).
  • Durante-MangoniE , AndiniR , ZampinoR. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect.25(8), 943–950 (2019).
  • YangD , GuoY , ZhangZ. Combined porin loss and extended spectrum β-lactamase production is associated with an increasing imipenem minimal inhibitory concentration in clinical Klebsiella pneumoniae strains. Curr. Microbiol.58(4), 366–370 (2009).
  • LoganLK , WeinsteinRA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis.215(Suppl. 1), S28–S36 (2017).
  • LittleML , QinX , ZerrDM , WeissmanSJ. Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae. Int. J. Antimicrob. Agents39(1), 52–57 (2012).
  • DoumithM , EllingtonMJ , LivermoreDM , WoodfordN. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother.63(4), 659–667 (2009).
  • FarraA , IslamS , StrålforsA , SörbergM , WretlindB. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int. J. Antimicrob. Agents31(5), 427–433 (2008).
  • Garcia-FernandezA , MiriagouV , PapagiannitsisCCet al.An ertapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob. Agents Chemother.54(10), 4178–4184 (2010).
  • LomovskayaO , ZgurskayaHI , TotrovM , WatkinsWJ. Waltzing transporters and “the dance macabre” between humans and bacteria. Nat. Rev. Drug Discov.6(1), 56–65 (2007).
  • KingDT , SobhanifarS , StrynadkaNCJ. The mechanisms of resistance to β-lactam antibiotics. In: Handbook of Antimicrobial Resistance.BerghuisA, MatlashewskiG, WainbergMA, SheppardD ( Eds). Springer New York, NY, USA, 177–201 (2017).
  • MeletisG , ExindariM , VavatsiN , SofianouD , DizaE. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia16(4), 303–307 (2012).
  • JacobyGA , Munoz-PriceLS. The new β-lactamases. N. Engl. J. Med.352(4), 380–391 (2005).
  • DoughertyTJ , PucciMJ. Antibiotic discovery and development. Springer Science and Business Media, NY, USA (2012).
  • PatelG , BonomoRA. “Stormy waters ahead”: global emergence of carbapenemases. Front. Microbiol.4, 48–64 (2013).
  • DjahmiN , Dunyach-RemyC , PantelA , DekhilM , SottoA , LavigneJ-P. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in mediterranean countries. BioMed Res. Int.2014, 1–11 (2014).
  • NordmannP , CuzonG , NaasT. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis.9(4), 228–236 (2009).
  • PfeiferY , CullikA , WitteW. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol.300(6), 371–379 (2010).
  • CuzonG , NaasT , TruongHet al.Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerg. Infect. Dis.16(9), 1349–1356 (2010).
  • MiltgenG , BonninRA , AvrilCet al.Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). Int. J. Antimicrob. Agents52(3), 416–420 (2018).
  • TakanoC , SekiM , KimDWet al.Development of a novel loop-mediated isothermal amplification method to detect guiana extended-spectrum (GES) β-lactamase genes in Pseudomonas aeruginosa. Front. Microbiol.10, 25–31 (2019).
  • QueenanAM , BushK. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev.20(3), 440–458 (2007).
  • SabathLD , AbrahamEP. Zinc as a Cofactor for Cephalosporinase from Bacillus cereus 569. Biochem. J.98(1), 11C–13C (1966).
  • WatanabeM , IyobeS , InoueM , MitsuhashiS. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.35(1), 147–151 (1991).
  • WalshTR , TolemanMA , PoirelL , NordmannP. Metallo-β -lactamases: the quiet before the storm?Clin. Microbiol. Rev.18(2), 306–325 (2005).
  • WalshTR. Emerging carbapenemases: a global perspective. Int. J. Antimicrob. Agents36, S8–S14 (2010).
  • YongD , TolemanMA , GiskeCGet al.Characterization of a new metallo-β-lactamase gene, blaNDM-1. and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence Type 14 from India. Antimicrob. Agents Chemother.53(12), 5046–5054 (2009).
  • DoiY , PatersonD. Carbapenemase-producing Enterobacteriaceae. Semin. Respir. Crit. Care Med.36(01), 074–084 (2015).
  • NordmannP , PoirelL , WalshTR , LivermoreDM. The emerging NDM carbapenemases. Trends Microbiol.19(12), 588–595 (2011).
  • RieberH , FrontzekA , PfeiferY. Emergence of metallo-β-lactamase GIM-1 in a clinical isolate of Serratia marcescens. Antimicrob. Agents Chemother.56(9), 4945–4947 (2012).
  • HongDJ , BaeIK , JangI-H , JeongSH , KangH-K , LeeK. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother.47(2), 81 (2015).
  • MajiduddinFK , MateronIC , PalzkillTG. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol.292(2), 127–137 (2002).
  • DaleJW , GodwinD , MossakowskaD , StephensonP , WallS. Sequence of the OXA2 β-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett.191(1), 39–44 (1985).
  • PoirelL , PotronA , NordmannP. OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother.67(7), 1597–1606 (2012).
  • YigitH , QueenanAM , AndersonGJet al.Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother.45(4), 1151–1161 (2001).
  • YigitH , QueenanAM , AndersonGJet al.Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother.52(2), 809–809 (2008).
  • KitchelB , RasheedJK , PatelJBet al.Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence Type 258. Antimicrob. Agents Chemother.53(8), 3365–3370 (2009).
  • MaltezouHC , GiakkoupiP , MaragosAet al.Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J. Infect.58(3), 213–219 (2009).
  • VillegasMV , LolansK , CorreaAet al.First identification of Pseudomonas aeruginosa isolates producing a KPC-Type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother.51(4), 1553–1555 (2007).
  • AgodiA , VoulgariE , BarchittaMet al.Containment of an outbreak of KPC-3-producing Klebsiella pneumoniae in Italy. J. Clin. Microbiol.49(11), 3986–3989 (2011).
  • Gomez-GilMR , Pano-PardoJR , Romero-GomezMPet al.Detection of KPC-2-producing Citrobacter freundii isolates in Spain. J. Antimicrob. Chemother.65(12), 2695–2697 (2010).
  • SenchynaF , GaurRL , SandlundJet al.Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a healthcare system in Northern California, from 2013 to 2016. Diagn. Microbiol. Infect. Dis.93(3), 250–257 (2019).
  • CastanheiraM , DeshpandeLM , MathaiD , BellJM , JonesRN , MendesRE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob. Agents Chemother.55(3), 1274–1278 (2011).
  • WalshTR , WeeksJ , LivermoreDM , TolemanMA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis.11(5), 355–362 (2011).
  • AungMS , SanN , MawWWet al.Prevalence of extended-spectrum Beta-lactamase and carbapenemase genes in clinical isolates of Escherichia coli in Myanmar: Dominance of blaNDM-5 and Emergence of blaOXA-181. Microb. Drug Resist.24(9), 1333–1344 (2018).
  • JafariZ , HaratiAA , HaeiliMet al.Molecular epidemiology and drug resistance pattern of carbapenem-resistant Klebsiella pneumoniae isolates from Iran. Microb. Drug Resist.25(3), 336–343 (2019).
  • MouftahSF , PálT , DarwishDet al.Epidemic IncX3 plasmids spreading carbapenemase genes in the United Arab Emirates and worldwide. Infect. Drug Resist.12, 1729–1742 (2019).
  • PoirelL , HeritierC , TolunV , NordmannP. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother.48(1), 15–22 (2004).
  • CarrerA , PoirelL , EraksoyH , CagatayAA , BadurS , NordmannP. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother.52(8), 2950–2954 (2008).
  • CuzonG , OuanichJ , GondretR , NaasT , NordmannP. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob. Agents Chemother.55(5), 2420–2423 (2011).
  • GlupczynskiY , HuangT-D , BouchahroufWet al.Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents39(2), 168–172 (2012).
  • MoquetO , BouchiatC , KinanaAet al.Class D OXA-48 carbapenemase in multidrug-resistant Enterobacteria, Senegal. Emerg. Infect. Dis.17(1), 143–144 (2011).
  • MatarGM , DandacheI , CarrërAet al.Spread of OXA-48-mediated resistance to carbapenems in Lebanese Klebsiella pneumoniae and Escherichia coli that produce extended spectrum β-lactamase. Ann. Trop. Med. Parasitol.104(3), 271–274 (2010).
  • LahlaouiH , PoirelL , BarguellilF , MoussaMB , NordmannP. Carbapenem-hydrolyzing class D β-lactamase OXA-48 in Klebsiella pneumoniae isolates from Tunisia. Eur. J. Clin. Microbiol. Infect. Dis.31(6), 937–939 (2012).
  • KamelNA , El-tayebWN , El-AnsaryMR , MansourMT , AboshanabKM. Phenotypic screening and molecular characterization of carbapenemase-producing Gram-negative bacilli recovered from febrile neutropenic pediatric cancer patients in Egypt. PLoS ONE13(8), e0202119 (2018).
  • CorreaA , delC , ampoR , Escandón-VargasKet al.Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from Colombian hospitals. Microb. Drug Resist.24(1), 48–54 (2018).
  • MorrillHJ , PogueJM , KayeKS , LaPlanteKL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis.2(2), ofv050 (2015).
  • GautierG , GuillardT , PodacB , BercotB , Vernet-GarnierV , de ChampsC. Detection of different classes of carbapenemases: adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J. Microbiol. Methods147, 26–35 (2018).
  • WeinsteinMP. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100 (28th Edition). Clinical and Laboratory Standards Institute, PA, USA (2018).
  • SeahC , LowDE , PatelSN , MelanoRG. Comparative evaluation of a chromogenic Agar medium, the Modified Hodge test, and a battery of Meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J. Clin. Microbiol.49(5), 1965–1969 (2011).
  • PatelJB. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100 (27th Edition).Clinical and Laboratory Standards Institute, PA, USA (2017).
  • SegawaT , MatsuiM , SuzukiMet al.Utilizing the Carba NP test as an indicator of expression level of carbapenemase genes in Enterobacteriaceae. J. Microbiol. Methods133, 35–39 (2017).
  • PoirelL , NordmannP. Rapidec carba NP test for rapid detection of carbapenemase producers. J. Clin. Microbiol.53(9), 3003–3008 (2015).
  • van AlmsickV , GhebremedhinB , PfennigwerthN , Ahmad-NejadP. Rapid detection of carbapenemase-producing Acinetobacter baumannii and carbapenem-resistant Enterobacteriaceae using a bioluminescence-based phenotypic method. J. Microbiol. Methods147, 20–25 (2018).
  • WarehamDW , PheeLM , AbdulMomin MHF. Direct detection of carbapenem resistance determinants in clinical specimens using immunochromatographic lateral flow devices. J. Antimicrob. Chemother.73(7), 1997–1998 (2018).
  • GlupczynskiY , EvrardS , OteIet al.Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J. Antimicrob. Chemother.71(5), 1217–1222 (2016).
  • NeonakisIK , SpandidosDA. Detection of carbapenemase producers by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur. J. Clin. Microbiol. Infect. Dis.38(10), 1795–1801 (2019).
  • HrabákJ , ChudáčkovaE , PapagiannitsisCC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin. Microbiol. Infect.20(9), 839–853 (2014).
  • BernabeuS , PoirelL , NordmannP. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae. Diagn. Microbiol. Infect. Dis.74(1), 88–90 (2012).
  • KaaseM , SzabadosF , WassillL , GatermannSG. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J. Clin. Microbiol.50(9), 3115–3118 (2012).
  • Garcia-FernandezS , MorosiniM-I , MarcoFet al.Evaluation of the eazyplex® SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals. J. Antimicrob. Chemother.70, 1047–1050 (2014).
  • McEwanAS , DeromeA , MeunierD , BurnsPJ , WoodfordN , DodgsonAR. Evaluation of the NucliSENS EasyQ KPC assay for detection of Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae. J. Clin. Microbiol.51(6), 1948–1950 (2013).
  • NijhuisR , SamuelsenØ , SavelkoulP , van ZwetA. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn. Microbiol. Infect. Dis.77(4), 316–320 (2013).
  • TraczewskiMM , CarrettoE , CantonRet al.Multicenter evaluation of the Xpert Carba-R Assay for detection of carbapenemase genes in Gram-negative isolates. J. Clin. Microbiol.56(8), e00272–18 (2018).
  • DoyleD , PeiranoG , LascolsC , LloydT , ChurchDL , PitoutJDD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J. Clin. Microbiol.50(12), 3877–3880 (2012).
  • WoodfordN , TiernoPM , YoungKet al.Outbreak of Klebsiella pneumoniae producing a new carbapenem- hydrolyzing class A -Lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother.48(12), 4793–4799 (2004).
  • PoirelL , WalshTR , CuvillierV , NordmannP. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis.70(1), 119–123 (2011).
  • SendaK , ArakawaY , IchiyamaSet al.PCR detection of metallo-β-lactamase gene (blaIMP) in Gram-negative rods resistant to broad-spectrum β-lactams. J. Clin. Microbiol.34(12), 2909–2913 (1996).
  • PoirelL , NaasT , NicolasDet al.Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother.44(4), 891–897 (2000).
  • TsakrisA , PournarasS , WoodfordNet al.Outbreak of infections caused by Pseudomonas aeruginosa Producing VIM-1 carbapenemase in Greece. 38(3), 1290–1292 (2000).
  • NordmannP , PoirelL , CarrerA , TolemanMA , WalshTR. How to detect NDM-1 producers. J. Clin. Microbiol.49(2), 718–721 (2011).
  • PeiranoG , Ahmed-BentleyJ , WoodfordN , PitoutJD. New Delhi metallo-β-lactamase from traveler returning to Canada. Emerg. Infect. Dis.17(2), 242–244 (2011).
  • PoirelL , BonninRA , NordmannP. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob. Agents Chemother.56(1), 559–562 (2012).
  • AktaşZ , BalKayacan Ç , SchneiderI , CanB , MidilliK , BauernfeindA. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy54(2), 101–106 (2008).
  • MentastiM , PrimeK , SandsK , KhanS , WoottonM. Rapid detection of IMP, NDM, VIM, KPC and OXA-48-like carbapenemases from Enterobacteriales and Gram-negative non-fermenter bacteria by real-time PCR and melt-curve analysis. Eur. J. Clin. Microbiol. Infect. Dis.38(11), 2029–2036 (2019).
  • CunninghamSA , VasooS , PatelR. Evaluation of the check-points check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J. Clin. Microbiol.54(5), 1368–1371 (2016).
  • MurphyNM , McLauchlinJ , OhaiC , GrantKA. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int. J. Food Microbiol.120(1–2), 110–119 (2007).
  • GuptaK , BhadeliaN. Management of urinary tract infections from multidrug-resistant organisms. Infect. Dis. Clin. North Am.28(1), 49–59 (2014).
  • AlizadehN , RezaeeMA , KafilHSet al.Detection of carbapenem-resistant Enterobacteriaceae by chromogenic screening media. J. Microbiol. Methods153, 40–44 (2018).
  • PeriAM , DoiY , PotoskiBA , HarrisPNA , PatersonDL , RighiE. Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn. Microbiol. Infect. Dis.94(4), 413–425 (2019).
  • GiamarellouH , GalaniL , BaziakaF , KaraiskosI. Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother.57(5), 2388–2390 (2013).
  • CeccarelliG , FalconeM , GiordanoAet al.Successful ertapenem–doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.57(6), 2900–2901 (2013).
  • LagerbäckP , KhineWWT , GiskeCG , TängdénT. Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time–kill experiments. J. Antimicrob. Chemother.71(8), 2321–2325 (2016).
  • SongJY , KeeSY , HwangISet al.In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother.60(2), 317–322 (2007).
  • DerisZZ , YuHH , DavisKet al.The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother.56(10), 5103–5112 (2012).
  • YadavR , LandersdorferCB , NationRL , BoyceJD , BulittaJB. Novel approach to optimize synergistic carbapenem-aminoglycoside combinations against carbapenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother.59(4), 2286–2298 (2015).
  • PaulM , DaikosGL , Durante-MangoniEet al.Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect. Dis.18(4), 391–400 (2018).
  • FalagasME , RafailidisPI , KasiakouSK , HatzopoulouP , MichalopoulosA. Effectiveness and nephrotoxicity of colistin monotherapy vs colistin–meropenem combination therapy for multidrug-resistant Gram-negative bacterial infections. Clin. Microbiol. Infect.12(12), 1227–1230 (2006).
  • Rodríguez-AvialI , PenaI , PicazoJJ , Rodríguez-AvialC , CulebrasE. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int. J. Antimicrob. Agents46(6), 616–621 (2015).
  • ToussaintKA , GallagherJC. β-lactam/β-lactamase inhibitor combinations: from then to now. Ann. Pharmacother.49(1), 86–98 (2015).
  • GibsonB. A brief review of a new antibiotic: meropenem-vaborbactam. Sr. Care Pharm.34(3), 187–191 (2019).
  • SmibertO , SatlinMJ , NelloreA , PelegAY. Carbapenem-resistant Enterobacteriaceae in solid organ transplantation: management principles. Curr. Infect. Dis. Rep.21(7), 26–37 (2019).
  • FalagasME , SkalidisT , VardakasKZ , LegakisNJ. on behalf of the Hellenic Cefiderocol Study Group. Activity of cefiderocol (S-649266) against carbapenem-resistant Gram-negative bacteria collected from inpatients in Greek hospitals. J. Antimicrob. Chemother.72(6), 1704–1708 (2017).
  • KohiraN , WestJ , ItoAet al.Invitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother.60(2), 729–734 (2016).
  • Ito-HoriyamaT , IshiiY , ItoAet al.Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother.60(7), 4384–4386 (2016).
  • BassettiM , RighiE. Eravacycline for the treatment of intra-abdominal infections. Expert Opin. Investig. Drugs23(11), 1575–1584 (2014).
  • FishmanN. Antimicrobial stewardship. Am. J. Infect. Control34(5), S55–S63 (2006).
  • FishmanN. Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol.33(4), 322–327 (2012).
  • DellitTH , OwensRC , McGowanJEet al.Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis.44(2), 159–177 (2007).