2,965
Views
4
CrossRef citations to date
0
Altmetric
Special Report

Venoms As an Adjunctive Therapy for Parkinson’s Disease: Where are We Now and Where are We going?

ORCID Icon
Article: FSO642 | Received 01 Jul 2020, Accepted 30 Sep 2020, Published online: 01 Dec 2020

References

  • WHO. Ageing and health. www.who.int/news-room/fact-sheets/detail/ageing-and-health
  • ChangAY , SkirbekkVF , TyrovolasS , KassebaumNJ , DielemanJL. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health4(3), e159–e167 (2019).
  • HouY , DanX , BabbarMet al.Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol.15(10), 565–581 (2019).
  • DorseyER , ShererT , OkunMS , BloemBR. The emerging evidence of the parkinson pandemic. J. Parkinsons. Dis.8(s1), S3–S8 (2018).
  • PoeweW , SeppiK , TannerCMet al.Parkinson disease. Nat. Rev. Dis. Primers3, 17013 (2017).
  • KaliaLV , KaliaSK. alpha-Synuclein and Lewy pathology in Parkinson’s disease. Curr. Opin. Neurol.28(4), 375–381 (2015).
  • Troncoso-EscuderoP , ParraA , NassifM , VidalRL. Outside in: unraveling the role of neuroinflammation in the progression of Parkinson’s disease. Front. Neurol.9, 860 (2018).
  • LecoursC , BordeleauM , CantinL , ParentM , PaoloTD , TremblayME. Microglial implication in Parkinson’s disease: loss of beneficial physiological roles or gain of inflammatory functions?Front. Cell Neurosci.12, 282 (2018).
  • CaligioreD , HelmichRC , HallettMet al.Parkinson’s disease as a system-level disorder. NPJ Parkinsons. Dis.2, 16025 (2016).
  • DujardinK , SgambatoV. Neuropsychiatric disorders in parkinson’s disease: what do we know about the role of dopaminergic and non-dopaminergic systems?Front. Neurosci.14, 25 (2020).
  • AndersenMS , KarshenasA , BachFW , GazeraniP. Pain and sensory abnormalities in Parkinson’s disease an age- and gender-matched controlled pilot study. US Neuology11(1), 27–33 (2015).
  • ZhuM , LiM , YeD , JiangW , LeiT , ShuK. Sensory symptoms in Parkinson’s disease: clinical features, pathophysiology and treatment. J. Neurosci. Res.94(8), 685–692 (2016).
  • ReedX , Bandres-CigaS , BlauwendraatC , CooksonMR. The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiol. Dis.124, 230–239 (2019).
  • Bandres-CigaS , Diez-FairenM , KimJJ , SingletonAB. Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis.137, 104782 (2020).
  • NandipatiS , LitvanI. Environmental exposures and Parkinson’s disease. Int. J. Environ. Res. Public Health13(9), 881 (2016).
  • GoldmanSM. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol.54, 141–164 (2014).
  • BeitzJM. Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.)6, 65–74 (2014).
  • RektorovaI. Current treatment of behavioral and cognitive symptoms of Parkinson’s disease. Parkinsonism Relat. Disord.59, 65–73 (2019).
  • OertelW , SchulzJB. Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J. Neurochem.139(Suppl. 1), 325–337 (2016).
  • DexterDT , JennerP. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic. Biol. Med.62, 132–144 (2013).
  • KaliaLV , LangAE. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol.12(2), 65–66 (2016).
  • GazeraniP. Probiotics for Parkinson’s Disease. Int. J. Mol. Sci.20(17), 4121 (2019).
  • SantosSF , de OliveiraHL , YamadaES , NevesBC , PereiraAJr. The gut and Parkinson’s disease – a bidirectional pathway. Front. Neurol.10, 574 (2019).
  • CharvinD , MedoriR , HauserRA , RascolO. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov.17(11), 844 (2018).
  • deOliveira Amaral H , Monge-FuentesV , BiolchiMayer Aet al.Animal venoms: therapeutic tools for tackling Parkinson’s disease. Drug Discov. Today24(11), 2202–2211 (2019).
  • de SouzaJM , GoncalvesBDC , GomezMV , VieiraLB , RibeiroFM. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front. Pharmacol.9, 145 (2018).
  • KingGF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther.11(11), 1469–1484 (2011).
  • ChenN , XuS , ZhangY , WangF. Animal protein toxins: origins and therapeutic applications. Biophys. Rep.4(5), 233–242 (2018).
  • PenningtonMW , CzerwinskiA , NortonRS. Peptide therapeutics from venom: current status and potential. Bioorg. Med. Chem.26(10), 2738–2758 (2018).
  • ClarkGC , CasewellNR , ElliottCTet al.Friends or foes? emerging impacts of biological toxins. Trends Biochem. Sci.44(4), 365–379 (2019).
  • YangX , WangY , WuC , LingEA. Animal venom peptides as a treasure trove for new therapeutics against neurodegenerative disorders. Curr. Med. Chem.26(25), 4749–4774 (2019).
  • RobinsonSD , UndheimEAB , UeberheideB , KingGF. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteomics14(10), 931–939 (2017).
  • GazeraniP , CairnsBE. Venom-based biotoxins as potential analgesics. Expert Rev. Neurother.14(11), 1261–1274 (2014).
  • GazeraniP. Unfolding the hidden potential of venomics for chronic pain. Future Neurology12(3), 129–131 (2017).
  • SilvaJ , Monge-FuentesV , GomesFet al.Pharmacological alternatives for the treatment of neurodegenerative disorders: wasp and bee venoms and their components as new neuroactive tools. Toxins (Basel)7(8), 3179–3209 (2015).
  • MorenoM , GiraltE. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel)7(4), 1126–1150 (2015).
  • WehbeR , FrangiehJ , RimaM , ElObeid D , SabatierJM , FajlounZ. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules24(16), 2997 (2019).
  • SonDJ , LeeJW , LeeYH , SongHS , LeeCK , HongJT. Therapeutic application of anti-arthritis, pain-releasing and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther.115(2), 246–270 (2007).
  • PuccaMB , CerniFA , OliveiraISet al.Bee updated: current knowledge on bee venom and bee envenoming therapy. Front. Immunol.10, 2090 (2019).
  • AwadK , AbushoukAI , AbdelKarimAH , MohammedM , NegidaA , ShalashAS. Bee venom for the treatment of Parkinson’s disease: how far is it possible?Biomed. Pharmacother.91, 295–302 (2017).
  • Monge-FuentesV , GomesFM , CamposGAet al.Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J. Venom Anim. Toxins Incl. Trop. Dis.21, 31 (2015).
  • JiangX , GanesanP , RengarajanT , ChoiDK , ArulselvanP. Cellular phenotypes as inflammatory mediators in Parkinson’s disease: interventional targets and role of natural products. Biomed. Pharmacother.106, 1052–1062 (2018).
  • MoreSV , KumarH , KimIS , SongSY , ChoiDK. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm.2013, 952375 (2013).
  • GeldersG , BaekelandtV , Vander Perren A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res.2018, 4784268 (2018).
  • KimJI , YangEJ , LeeMSet al.Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int. J. Neurosci.121(4), 209–217 (2011).
  • KinK , YasuharaT , KamedaM , DateI. Animal models for Parkinson’s disease research: trends in the 2000s. Int. J. Mol. Sci.20(21), 5402 (2019).
  • DooAR , KimST , KimSNet al.Neuroprotective effects of bee venom pharmaceutical acupuncture in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Neurol. Res.32(Suppl. 1), 88–91 (2010).
  • ChungES , KimH , LeeG , ParkS , KimH , BaeH. Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: role of regulatory T cells. Brain Behav. Immun.26(8), 1322–1330 (2012).
  • ChungES , LeeG , LeeCet al.Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s disease. J. Immunol.195(10), 4853–4860 (2015).
  • YeM , ChungHS , LeeCet al.Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson’s disease alpha-synuclein transgenic mice. Exp. Mol. Med.48(7), e244 (2016).
  • ReynoldsAD , BanerjeeR , LiuJ , GendelmanHE , MosleyRL. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol.82(5), 1083–1094 (2007).
  • MauriceN , DeltheilT , MelonCet al.Bee venom alleviates motor deficits and modulates the transfer of cortical information through the basal ganglia in rat models of Parkinson’s disease. PLoS ONE10(11), e0142838 (2015).
  • KimME , LeeJY , LeeKMet al.Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson’s disease. Arch Pharm. Res.39(8), 1160–1170 (2016).
  • Salthun-LassalleB , HirschEC , WolfartJ , RubergM , MichelPP. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J. Neurosci.24(26), 5922–5930 (2004).
  • ToulorgeD , GuerreiroS , HildA , MaskosU , HirschEC , MichelPP. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+. FASEB J.25(8), 2563–2573 (2011).
  • AndersonDW , NeavinT , SmithJA , SchneiderJS. Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res.905(1–2), 44–53 (2001).
  • KhalilWK , AssafN , ElShebineySA , SalemNA. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem. Int.80, 79–86 (2015).
  • HanS , LeeK , YeoJet al.Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. J. Ethnopharmacol.111(1), 176–181 (2007).
  • MoonDO , ParkSY , LeeKJet al.Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol.7(8), 1092–1101 (2007).
  • KimKH , KimM , LeeJ , JeonHN , KimSH , BaeH. Comparison of the protective effects of bee venom extracts with varying PLA2 compositions in a mouse model of Parkinson’s disease. Toxins (Basel)11(6), 358 (2019).
  • KimKH , LeeSY , ShinJ , HwangJT , JeonHN , BaeH. Dose-dependent neuroprotective effect of standardized bee venom phospholipase A2 against MPTP-induced Parkinson’s disease in mice. Front. Aging Neurosci.11, 80 (2019).
  • MirshafieyA. Venom therapy in multiple sclerosis. Neuropharmacology53(3), 353–361 (2007).
  • ChoSY , ShimSR , RheeHYet al.Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat. Disord.18(8), 948–952 (2012).
  • DooKH , LeeJH , ChoSYet al.A prospective open-label study of combined treatment for idiopathic Parkinson’s disease using acupuncture and bee venom acupuncture as an adjunctive treatment. J. Altern. Complement. Med.21(10), 598–603 (2015).
  • HartmannA , MullnerJ , MeierNet al.Bee venom for the treatment of Parkinson disease – a randomized controlled clinical trial. PLoS ONE11(7), e0158235 (2016).
  • ChoSY , LeeYE , DooKHet al.Efficacy of combined treatment with acupuncture and bee venom acupuncture as an adjunctive treatment for Parkinson’s disease. J. Altern. Complement. Med.24(1), 25–32 (2018).
  • YinSM , ZhaoD , YuDQet al.Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease. Sheng Li Xue Bao66(6), 658–666 (2014).
  • XiangY , WuQ , LiangLet al.Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson’s disease in the MPTP-induced mice model. J. Drug Target.20(1), 67–75 (2012).
  • MartinsNM , SantosNA , SartimMA , CintraAC , SampaioSV , SantosAC. A tripeptide isolated from Bothrops atrox venom has neuroprotective and neurotrophic effects on a cellular model of Parkinson’s disease. Chem. Biol. Interact.235, 10–16 (2015).
  • BertilssonG , PatroneC , ZachrissonOet al.Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J. Neurosci. Res.86(2), 326–338 (2008).
  • ChenS , YuSJ , LiYet al.Post-treatment with PT302, a long-acting Exendin-4 sustained release formulation, reduces dopaminergic neurodegeneration in a 6-Hydroxydopamine rat model of Parkinson’s disease. Sci. Rep.8(1), 10722 (2018).
  • KimS , MoonM , ParkS. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol.202(3), 431–439 (2009).
  • AthaudaD , FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today21(5), 802–818 (2016).
  • AthaudaD , MaclaganK , SkeneSSet al.Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet390(10103), 1664–1675 (2017).
  • Aviles-OlmosI , DicksonJ , KefalopoulouZet al.Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Invest.123(6), 2730–2736 (2013).
  • Aviles-OlmosI , DicksonJ , KefalopoulouZet al.Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons. Dis.4(3), 337–344 (2014).
  • XuH , AnD , YinSMet al.[The alterations of apoptosis factor Bcl-2/Bax in the early Parkinson’s disease rats and the protective effect of scorpion venom derived activity peptide]. Zhongguo Ying Yong Sheng Li Xue Za Zhi31(3), 225–229 (2015).
  • KirikD , RosenbladC , BjorklundA. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp. Neurol.152(2), 259–277 (1998).
  • WangY , QinZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis15(11), 1382–1402 (2010).
  • HartmannA , MuellnerJ , MeierNet al.Correction: bee venom for the treatment of parkinson disease - a randomized controlled clinical trial. PLoS ONE11(9), e0162937 (2016).
  • JuckerM. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med.16(11), 1210–1214 (2010).
  • KhanKH. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull.3(2), 257–263 (2013).
  • ChoKH , KimTH , JungWSet al.Pharmacoacupuncture for idiopathic Parkinson’s disease: a systematic review of randomized controlled trials. Evid. Based Complement. Alternat. Med.2018, 3671542 (2018).
  • HuangC , ZhangZ , CuiW. Marine-derived natural compounds for the treatment of Parkinson’s disease. Mar. Drugs17(4), 221 (2019).
  • LuoS , ZhangsunD , WuYet al.Characterization of a novel alpha-conotoxin from conus textile that selectively targets alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors. J. Biol. Chem.288(2), 894–902 (2013).