1,383
Views
4
CrossRef citations to date
0
Altmetric
Preliminary Communication

Curcumin Micelles Entrapped in Eudragit S-100 Matrix: a Synergistic Strategy for Enhanced Oral Delivery

ORCID Icon, , &
Article: FSO677 | Received 29 Jul 2020, Accepted 21 Dec 2020, Published online: 20 Jan 2021

References

  • FathyAbd-Ellatef GE , GazzanoE , ChirioDet al.Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics12(2), 96 (2020).
  • BMythri R , MSrinivas BM. Curcumin: a potential neuroprotective agent in parkinson's disease. Curr. Pharm. Des.18, 91–99 (2012).
  • MahmoodK , ZiaKM , ZuberM , SalmanM , AnjumMN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: a review. Int. J. Biol. Macromol.81, 877–890 (2015).
  • Araiza-CalahorraA , AkhtarM , SarkarA. Recent advances in emulsion-based delivery approaches for curcumin: from encapsulation to bioaccessibility. Trends Food Sci. Technol.71, 155–169 (2018).
  • HuL , ShiY , LiJHet al.Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech.16, 1327–1334 (2015).
  • PurpuraM , LoweryRP , WilsonJM , MannanH , MünchG , Razmovski-NaumovskiV. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur. J. Nutr.57, 929–938 (2018).
  • GopiS , JacobJ , VarmaKet al.Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: an open-label parallel-arm study. Phytother. Res.31, 1883–1891 (2017).
  • ZhangY , RenT , GouJet al.Strategies for improving the payload of small molecular drugs in polymeric micelles. J. Control. Release261, 352–366 (2017).
  • AhmadZ , ShahA , SiddiqM , KraatzH. Polymeric micelles as drug delivery vehicles. RSC Advances4, 17028–17038 (2014).
  • KumariP , SwamiMO , NadipalliSK , MyneniS , GhoshB , BiswasS. Curcumin delivery by poly (lactide)-based co-polymeric micelles: an in vitro anticancer study. Pharm. Res.33, 826–841 (2016).
  • LiuW , ChenXD , ChengZ , SelomulyaC. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. J. Food Eng.1(169), 189–195 (2016).
  • SureshK , NangiaA. Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. Cryst. Eng. Comm.20(24), 3277–3296 (2018).
  • JanasC , MostaphaouiZ , SchmiedererL , BauerJ , WackerMG. Novel polymeric micelles for drug delivery: material characterization and formulation screening. Int. J. Pharm.509, 197–207 (2016).
  • CagelM , TesanFC , BernabeuEet al.Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur. J. Pharm. Biopharm.113, 211–228 (2017).
  • BoraPP , BihaniM , PlummerS , GallouF , HandaS. Shielding effect of micelle for highly effective and selective monofluorination of indoles in water. ChemSusChem.12, 3037–3042 (2019).
  • ZhongY , JingG , TianBet al.Supersaturation induced by itraconazole/soluplus® micelles provided high GI absorption in vivo. Asian J. Pharm. Sci.11, 255–264 (2016).
  • de AraújoDR , OshiroA , da SilvaDC , AkkariACS , de MelloJC , RodriguesT. Poloxamers as drug-delivery systems: physicochemical, pharmaceutical, and toxicological aspects. In: Nanotoxicology AnonymousSpringer, New York, 281–298 (2014).
  • GrimaudoMA , PescinaS , PadulaCet al.Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol. Pharm.15, 571–584 (2018).
  • AkbarMU , ZiaKM , NazirA , IqbalJ , EjazSA , AkashMSH. Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech.19, 2719–2739 (2018).
  • JindalN , MehtaS. Nevirapine loaded poloxamer 407/pluronic p123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B. Biointerfaces129, 100–106 (2015).
  • RussoE , VillaC. Poloxamer hydrogels for biomedical applications. Pharmaceutics11, 671 (2019).
  • KimSG , SuhHJ , HanSH , LeeH , KimH , KimH. Encapsulated curcumin enhances intestinal absorption and improves hepatic damage in alcoholic liver disease-induced rats. Prev. Nutr. Food Sci.24, 410 (2019).
  • TianC , AsgharS , WuYet al.Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Int. J. Nanomedicine12, 7897–7911 (2017).
  • LiX , UeharaS , SawangratKet al.Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int. J. Pharm.535, 340–349 (2018).
  • DeLeo V , DiGioia S , MilanoFet al.Eudragit s100 entrapped liposome for curcumin delivery: anti-oxidative effect in caco-2 cells. Coatings10, 114 (2020).
  • ChenS , GuoF , DengTet al.Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech18, 1277–1287 (2017).
  • AnsariF , PourjafarH , JodatV , SahebiJ , AtaeiA. Effect of eudragit s100 nanoparticles and alginate chitosan encapsulation on the viability of lactobacillus acidophilus and lactobacillus rhamnosus. AMB Express7, 144 (2017).
  • ChavesPDS , FrankLA , FrankAG , PohlmannAR , GuterresSS , BeckRCR. Mucoadhesive properties of eudragit® rs100, eudragit® s100, and poly (ε-caprolactone) nanocapsules: influence of the vehicle and the mucosal surface. AAPS PharmSciTech19, 1637–1646 (2018).
  • McLellanA. Comparison of two commercial preparations of curcumin using the caco-2 in vitro assay of human intestinal permeability. J. Restor. Med.7, 1–8 (2019).
  • SosnikA , SeremetaKP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci.223, 40–54 (2015).
  • WijianiN , IsadiartutiD , RijalMAS , YusufH. Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery. Int. J. Nanomedicine15, 1787 (2020).
  • GuB , LinehanB , TsengY. Optimization of the büchi b-90 spray drying process using central composite design for preparation of solid dispersions. Int. J. Pharm.491, 208–217 (2015).
  • Al-KhattawiA , KonerJ , RuePet al.A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur. J. Pharm. Biopharm.94, 1–10 (2015).
  • CheverS , MejeanS , DolivetAet al.Agglomeration during spray drying: physical and rehydration properties of whole milk/sugar mixture powders. LWT-Food Sci. Technol.83, 33–41 (2017).
  • Stunda-ZujevaA , IrbeZ , Berzina-CimdinaL. Controlling the morphology of ceramic and composite powders obtained via spray drying–a review. Ceram. Int.43, 11543–11551 (2017).
  • ZellmerS , GarnweitnerG , BreinlingerT , KraftT , SchildeC. Hierarchical structure formation of nanoparticulate spray-dried composite aggregates. ACS Nano9, 10749–10757 (2015).
  • JaskulskiM , WawrzyniakP , ZbicińskiI. CFD simulations of droplet and particle agglomeration in an industrial counter-current spray dryer. Adv. Powder Technol.29, 1724–1733 (2018).
  • DongQ , ZhouM , LinX , ShenL , FengY. Differences in fundamental and functional properties of hpmc coprocessed fillers prepared by fluid-bed coating and spray drying. Eur. J. Pharm. Sci.119, 147–158 (2018).
  • MengF , TrivinoA , PrasadD , ChauhanH. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur. J. Pharm. Sci.71, 12–24 (2015).
  • WangJ , WangL , ZhangL , HeD , JuJ , LiW. Studies on the curcumin phospholipid complex solidified with soluplus®. J. Pharm. Pharmacol.70, 242–249 (2018).
  • IshakKA , ZahidNI , VelayuthamTS , AnnuarMSM , HashimR. Effects of lipid packing and intermolecular hydrogen bond on thermotropic phase transition of stearyl glucoside. J. Mol. Liq.281, 20–28 (2019).
  • Silva-BuzanelloRAD , SouzaMFD , OliveiraDADet al.Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polímeros26, 207–214 (2016).
  • NazZ , AhmadFJ. Curcumin-loaded colloidal carrier system: formulation optimization, mechanistic insight, ex vivo and in vivo evaluation. Int. J. Nanomedicine10, 4293–4307 (2015).
  • SadeghiF , AshoftehM , HomayouniA , AbbaspourM , NokhodchiA , GarekaniHA. Antisolvent precipitation technique: a very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement. Colloids Surf B. Biointerfaces147, 258–264 (2016).
  • BaghelS , CathcartH , O'ReillyNJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci.105, 2527–2544 (2016).
  • RachmawatiH , AlShaal L , MüllerRH , KeckCM. Development of curcumin nanocrystal: physical aspects. J. Pharm. Sci.102, 204–214 (2013).
  • CuiJ , YuB , ZhaoYet al.Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int. J. Pharm.371, 148–155 (2009).
  • ZhaoZ , XieM , LiYet al.Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. Int. J. Nanomedicine10, 3171–3181 (2015).
  • VemulaSK , VeerareddyPR. Fast disintegrating tablets of flurbiprofen: formulation and characterization. Lat. Am. J. Pharm.30(6), 1135–1141 (2011).