9,907
Views
25
CrossRef citations to date
0
Altmetric
Review

An Overview of Artificial Intelligence in Oncology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO787 | Received 11 Jun 2021, Accepted 19 Jan 2022, Published online: 10 Feb 2022

References

  • SungH , FerlayJ , SiegelRLet al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • EmensLA , AsciertoPA , DarcyPKet al.ScienceDirect Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer81, 116–129 (2017).
  • AhnenDJ , WadeSW , JonesWFet al.The increasing incidence of young-onset colorectal cancer: a call to action. Mayo Clin. Proc.89(2), 216–224 (2014).
  • VermaV , SpraveT , HaqueWet al.A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis. J. Immunother. Cancer6(1), 1–15 (2018).
  • DisparitiesA , GrossCP , PageP. Equal proportion to the cancer disease. Primary Care291(22), 2720–2726 (2004).
  • Hematology/Oncology (Cancer) Approvals & Safety Notifications [Internet].U.S. Food and Drug Administration (2021). https://wayback.archive-it.org/7993/20201219232235/https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications
  • DongJ , GengY , LuDet al.Clinical trials for artificial intelligence in cancer diagnosis: a cross-sectional study of registered trials in ClinicalTrials.gov. Front. Oncol.10(September), 1–6 (2020).
  • HosnyA , ParmarC , QuackenbushJ , SchwartzLH , AertsHJWL. Artificial intelligence in radiology. Nat. Rev. Cancer18(8), 500–510 (2018).
  • RajkomarA , DeanJ , KohaneI. Machine learning in medicine. N. Engl. J. Med.380(14), 1347–1358 (2019).
  • WangF , CasalinoLP , KhullarD. Deep learning in medicine – promise, progress, and challenges. JAMA Intern. Med.179(3), 293–294 (2019).
  • WiensJ , SariaS , SendakMet al.Do no harm: a roadmap for responsible machine learning for health care. Nat. Med.25(9), 1337–1340 (2019).
  • HandelmanGS , KokHK , ChandraRVet al.Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. AJR Am. J. Roentgenol.212(1), 38–43 (2018).
  • AI: A Glossary of Terms (2019). https://doi.org/10.1007/978-3-319-94878-2
  • JhaS , TopolEJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA316(22), 2353–2354 (2016).
  • BiWL , HosnyA , SchabathMBet al.Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin.69(2), 127–157 (2019).
  • HosnyA , ParmarC , QuackenbushJ , SchwartzLH , AertsHJWL. Artificial intelligence in radiology. Nat. Rev. Cancer18(8), 500–510 (2018).
  • GhoshA. Artificial intelligence using open source BI-RADS data exemplifying potential future use. J. Am. Coll. Radiol.16(1), 64–72 (2019).
  • SchaffterT , BuistDSM , LeeCIet al.Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw. Open3(3), e200265 (2020).
  • SchultheissM , SchoberSA , LoddeMet al.A robust convolutional neural network for lung nodule detection in the presence of foreign bodies. Sci. Rep.10(1), 12987 (2020).
  • ZhangM , YoungGS , ChenHet al.Deep-learning detection of cancer metastases to the brain on MRI. J. Magn. Reason. Imaging52(4), 1227–1236 (2020).
  • LiuX. Deep learning analysis for automatic lung nodule detection. J. Global Oncol.5(Suppl.), 27 (2019).
  • ShaverMM , KohantebPA , ChiouCet al.Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging. Cancers (Basel)11(6), 829 (2019).
  • AvanzoM , StancanelloJ , PirroneG , SartorG. Radiomics and deep learning in lung cancer. Strahlenther. Onkol.196(10), 879–887 (2020).
  • DreherC , LindeP , Boda-HeggemannJ , BaesslerB. Radiomics for liver tumours. Strahlenther. Onkol.196(10), 888–899 (2020).
  • KocherM , RugeMI , GalldiksN , LohmannP. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther. Onkol.196(10), 856–867 (2020).
  • BaeS , AnC , AhnSSet al.Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci. Rep.10(1), 12110 (2020).
  • MasperoM , BentvelzenLG , SavenijeMHFet al.Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiother. Oncol.153, 197–204 (2020).
  • MurakamiY , MagomeT , MatsumotoK , SatoT , YoshiokaY , OguchiM. Fully automated dose prediction using generative adversarial networks in prostate cancer patients. PLoS ONE15(5), e0232697 (2020).
  • HauboldJ , HoschR , UmutluLet al.Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network. Eur. Radiol.31(8), 6087–6095 (2021).
  • GongE , PaulyJM , WintermarkM , ZaharchukG. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J. Magn. Reason. Imaging48(2), 330–340 (2018).
  • KatsariK , PennaD , ArenaVet al.Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Phys.8(1), 25 (2021).
  • EltonDC , ChenA , PickhardtPJ , SummersRM. Cardiovascular disease and all-cause mortality risk prediction from abdominal CT using deep learning. medRxiv. doi:10.1101/2021.08.30.21262686 (2021) ( Epub ahead of print).
  • PickhardtPJ , GraffyPM , ZeaRet al.Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit. Health2(4), e192–e200 (2020).
  • YalaA , LehmanC , SchusterT , PortnoiT , BarzilayR. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology292(1), 60–66 (2019).
  • GolatkarA , AnandD , SethiA. Classification of Breast Cancer Histology Using Deep Learning BT - Image Analysis and Recognition. CampilhoA, KarrayF, terHaar Romeny B ( Eds). Springer International Publishing, Cham, Switzerland, 837–844 (2018). http://arxiv.org/abs/1802.08080
  • RezvantalabA , SafigholiH , KarimijeshniS. Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural networks algorithms. arXiv:1810.10348 (2018) ( Epub ahead of print).
  • KalilAJ. Impact assessment in identifying patients at risk of sepsis after a deployment of a cognitive robot risk manager (Robot Laura). (2022). http://repositorio.utfpr.edu.br:8080/jspui/handle/1/2982
  • GinatDT. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology62(3), 335–340 (2020).
  • YamamotoJF , de SouzaIO , LetaifLS , Cobello-JuniorV. Information technology challenges in a public hospital during the COVID-19 pandemic. Clinics (Sao Paulo)76, e2648 (2021).
  • PucchioA , EisenhauerEA , MoraesFY. Medical students need artificial intelligence and machine learning training. Nat. Biotechnol.39(3), 388–389 (2021).
  • MiottoR , LiL , KiddBA , DudleyJT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep.6, 26094 (2016).
  • WenYL , LeechM. Review of the role of radiomics in tumour risk classification and prognosis of cancer. Anticancer Res.40(7), 3605–3618 (2020).
  • SakellaropoulosT , VougasK , NarangSet al.A deep learning framework for predicting response to therapy in cancer. Cell Rep.29(11), 3367–3373.e4 (2019).
  • NartowtBJ , HartGR , MuhammadW , LiangY , StarkGF , DengJ. Robust machine learning for colorectal cancer risk prediction and stratification. Front. Big Data3, 6 (2020).
  • NartowtBJ , HartGR , RoffmanDAet al.Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data. PLoS ONE14(8), 1–18 (2019).
  • HartGR , RoffmanDA , DeckerR , DengJ. A multi-parameterized artificial neural network for lung cancer risk prediction. PLoS ONE13(10), 1–13 (2018).
  • MuhammadW , HartGR , NartowtBet al.Pancreatic cancer prediction through an artificial neural network. Front. Artif. Intell.2, 2 (2019).
  • RoffmanD , HartG , GirardiM , KoCJ , DengJ. Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network. Sci. Rep.8(1), 1–7 (2018).
  • StarkGF , HartGR , NartowtBJ , DengJ. Predicting breast cancer risk using personal health data and machine learning models. PLoS ONE14(12), 1–17 (2019).
  • VermeerNCA , SnijdersHS , HolmanFAet al.Colorectal cancer screening: systematic review of screen-related morbidity and mortality. Cancer Treat. Rev.54, 87–98 (2017).
  • IsakssonLJ , PepaM , ZaffaroniMet al.Machine learning-based models for prediction of toxicity outcomes in radiotherapy. Front. Oncol.10, 790 (2020).
  • Oyaga-IriarteE , InsaustiA , SayarO , AldazA. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J. Pharmacol. Sci.140(1), 20–25 (2019).
  • CuplovV , AndréN. Machine learning approach to forecast chemotherapy-induced haematological toxicities in patients with rhabdomyosarcoma. Cancers.12(7), 1–13 (2020).
  • HongJC , NiedzwieckiD , PaltaM , TenenbaumJD. Predicting emergency visits and hospital admissions during radiation and chemoradiation: an internally validated pretreatment machine learning algorithm abstract. JCO Clin. Cancer Inform.2, 1–11 (2018).
  • BibaultJE , ChangDT , XingL. Development and validation of a model to predict survival in colorectal cancer using a gradient-boosted machine. Gut70(5), 884–889 (2021).
  • SendersJT , StaplesP , MehrtashAet al.An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning. Neurosurgery86(2), E184–E192 (2020).
  • KimDW , LeeS , KwonS , NamW , ChaIH , KimHJ. Deep learning-based survival prediction of oral cancer patients. Sci. Rep.9(1), 1–10 (2019).
  • MatsuoK , CaliforniaS , AngelesLet al.HHS Public Access. 220(4), 1–22 (2020).
  • MazakiJ , KatsumataK , OhnoYet al.A novel prediction model for colon cancer recurrence using auto-artificial intelligence. Anticancer Res.41(9), 4629–4636 (2021).
  • NasiefH , ZhengC , SchottDet al.A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis. Oncol.3(1), 1–10 (2019).
  • TrebeschiS , DragoSG , BirkbakNJet al.Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol.30(6), 998–1004 (2019).
  • BibaultJE , GiraudP , DurduxCet al.Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci. Rep.8(1), 1–8 (2018).
  • MoriY , ei KudoS , EastJEet al.Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video). Gastrointest. Endosc.92(4), 905–911.e1 (2020).
  • HuL , BellD , AntaniSet al.An observational study of deep learning and automated evaluation of cervical images for cancer screening. J. Natl Cancer Inst.111(9), 923–932 (2019).
  • ShafferK. Can machine learning be used to generate a model to improve management of high-risk breast lesions?Radiology286(3), 819–821 (2018).
  • HildebrandLA , PierceCJ , DennisM , ParachaM , MaozA. Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer. Cancers13(3), 1–24 (2021).
  • KatherJN , PearsonAT , HalamaNet al.Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med.25(7), 1054–1056 (2019).
  • LiangG , FanW , LuoH , ZhuX. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed. Pharmacother.128, 110255 (2020).
  • LiuB , HeH , LuoH , ZhangT , JiangJ. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc. Neurol.4(4), 206–213 (2019).
  • LiuP , LiH , LiS , LeungKS. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics20(1), 408 (2018).
  • ArtemovA , PutinE , VanhaelenQ , AliperA , OzerovI , ZhavoronkovA. Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes. bioRxiv.095653 (2016).
  • HassanzadehH , KarimiS , NguyenA. Matching patients to clinical trials using semantically enriched document representation. J. Biomed. Inform.105, 103406 (2020).
  • BeckJT , RammageM , JacksonGPet al.Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center. JCO Clin. Cancer Inform.4, 50–59 (2020).
  • UngerJM , CookE , TaiE , BleyerA. The role of clinical trial participation in cancer research: barriers, evidence, and strategies. Am. Soc. Clin. Oncol. Educ. Book.36, 185–198 (2016).
  • SchorkNJ. Artificial intelligence and personalized medicine. Cancer Treat. Res.178, 265–283 (2019).
  • FlemingN. How artificial intelligence is changing drug discovery. Nature557(7707), S55–S57 (2018).
  • BiniSA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?J. Arthroplasty33(8), 2358–2361 (2018).
  • WrzeszczynskiKO , FrankMO , KoyamaTet al.Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma. Neurol. Genet.3(4), e164 (2017).
  • DlaminiZ , FranciesFZ , HullR , MarimaR. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J.18, 2300–2311 (2020).
  • CapperD , StichelD , SahmFet al.Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol.136(2), 181–210 (2018).
  • JieZ , ZhiyingZ , LiL. A meta-analysis of Watson for Oncology in clinical application. Sci. Rep.11(1), 5792 (2021).
  • CurtisNJ , DennisonG , SalibE , HashimotoDA , FrancisNK. Artificial neural network individualised prediction of time to colorectal cancer surgery. Gastroenterol. Res. Pract.2019, 285931 (2019).
  • KellyCJ , KarthikesalingamA , SuleymanM , CorradoG , KingD. Key challenges for delivering clinical impact with artificial intelligence. BMC Med.17(1), 195 (2019).
  • RigbyMJ. Ethical dimensions of using artificial intelligence in health care. AMA J. Ethics21(2), 121–124 (2019).
  • RassyE , PavlidisN. Progress in refining the clinical management of cancer of unknown primary in the molecular era. Nat. Rev. Clin. Oncol.17(9), 541–554 (2020).
  • LuMY , ChenTY , WilliamsonDFKet al.AI-based pathology predicts origins for cancers of unknown primary. Nature594(7861), 106–110 (2021).
  • BeamAL , KohaneIS. Translating artificial intelligence into clinical care. JAMA316(22), 2368–2369 (2016).
  • ChuaIS , Gaziel-YablowitzM , KorachZTet al.Artificial intelligence in oncology: path to implementation. Cancer Med.10(12), 4138–4149 (2021).
  • PatelSK , GeorgeB , RaiV. Artificial intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front. Pharmacol.11, 1177 (2020).
  • GaoQ , ZhuH , DongLet al.Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell179(2), 561–577.e22 (2019).
  • WeiglM , MüllerA , VincentC , AngererP , SevdalisN. The association of workflow interruptions and hospital doctors' workload: a prospective observational study. BMJ Qual. Saf.21(5), 399–407 (2012).
  • SeragA , Ion-MargineanuA , QureshiHet al.Translational AI and deep learning in diagnostic pathology. Front. Med. (Lausanne)6, 185 (2019).
  • TizhooshH , PantanowitzL. Artificial intelligence and digital pathology: challenges and opportunities. J. Pathol. Inform.9(1), 38 (2018).
  • ShawJ , RudziczR , JamiesonT , GoldfarbA. Artificial intelligence and the implementation challenge. J. Med. Internet Res.21(7), e13659 (2019).