759
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Coexpression Network Analysis Identified lncRNAs-mRNAs With Potential Relevance in African Ancestry Prostate Cancer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO749 | Received 05 Jun 2021, Accepted 30 Jul 2021, Published online: 24 Sep 2021

References

  • BrayF , FerlayJ , SoerjomataramI , SiegelR , TorreL , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. [ Epub ahead of print] (2018).
  • ZengC , WenW , MorgansAK , PaoW , ShuX-O , ZhengW. Disparities by race, age, and sex in the improvement of survival for major cancers. JAMA Oncol.1(1), 88 (2015).
  • DeSantisCE , MillerKD , GodingSauer A , JemalA , SiegelRL. Cancer statistics for African Americans, 2019. CA Cancer J. Clin.69(3), 211–233 (2019).
  • CoughlinSS , VernonM , KlaassenZ , TingenMS , CortesJE. Knowledge of prostate cancer among African American men: a systematic review. Prostate81(3), 202–213 (2020).
  • SmithZL , EggenerSE , MurphyAB. African-American prostate cancer disparities. Curr. Urol. Rep.18(10), 81 (2017).
  • RebbeckTR. Prostate cancer disparities by race and ethnicity: from nucleotide to neighborhood. Cold Spring Harb. Perspect. Med.8(9), a030387 (2018).
  • BhardwajA , SrivastavaSK , KhanMAet al.Racial disparities in prostate cancer: a molecular perspective. Front. Biosci. (Landmark Ed.)22, 772–782 (2017).
  • YuanJ , KenslerKH , HuZet al.Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet.16(2), 1–26 (2020).
  • AminN , McGrathA , ChenY-PP. Evaluation of deep learning in non-coding RNA classification. Nat. Mach. Intell.1(5), 246–256 (2019).
  • WangKC , ChangHY. Molecular mechanisms of long noncoding RNAs. Mol. Cell43(6), 904–914 (2011).
  • StavastCJ , ErkelandSJ. The non-canonical aspects of microRNAs: many roads to gene regulation. Cells8(11), 1465 (2019).
  • O'BrienJ , HayderH , ZayedY , PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne).9, 402 (2018).
  • LiJ , SunD , PuW , WangJ , PengY. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer6(4), 319–336 (2020).
  • MalikB , FengF. Long noncoding RNAs in prostate cancer: overview and clinical implications. Asian J. Androl.18(4), 568–574 (2016).
  • QinT , LiJ , ZhangK-Q. Structure, regulation, and function of linear and circular long non-coding RNAs. Front. Genet.11, 150 (2020).
  • PengY , CroceCM. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther.1, 15004 (2016).
  • ChiY , WangD , WangJ , YuW , YangJ. Long non-coding RNA in the Pathogenesis of cancers. Cells8(9), 1–44 (2019).
  • SlackFJ , ChinnaiyanAM. The role of non-coding RNAs in oncology. Cell179(5), 1033–1055 (2019).
  • RattiM , LampisA , GhidiniMet al.MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target. Oncol.15(3), 261–278 (2020).
  • ValeraVA , Parra-MedinaR , WalterBA , PintoP , MerinoMJ. microRNA expression profiling in young prostate cancer patients. J. Cancer11(14), 4106–4114 (2020).
  • Parra-MedinaR , López-KleineL , Ramírez-ClavijoS , Payán-GómezC. Identification of candidate miRNAs in early-onset and late-onset prostate cancer by network analysis. Sci. Rep.10(1), 1–14 (2020).
  • KanwalR , PlagaAR , LiuX , ShuklaGC , GuptaS. MicroRNAs in prostate cancer: functional role as biomarkers. Cancer Lett.407, 9–20 (2017).
  • RamnarineVR , KobelevM , GibbEAet al.The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. Eur. Urol.76(5), 546–559 (2019).
  • DengJ , TangJ , WangG , ZhuYS. Long non-coding RNA as potential biomarker for prostate cancer: is it making a difference?Int. J. Environ. Res. Public Health14(3), 270 (2017).
  • Collado-TorresL , NelloreA , KammersKet al.Reproducible RNA-seq analysis using recount2. Nat. Biotechnol.35(4), 319–321 (2017).
  • AfganE , BakerD , vanden Beek Met al.The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res.44(W1), W3–W10 (2016).
  • ZhangB , HorvathS. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.4(1), Article 17 (2005).
  • EloLL , JärvenpääH , OrešičM , LahesmaaR , AittokallioT. Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics23(16), 2096–2103 (2007).
  • ShannonP. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • TangZ , LiC , KangB , GaoG , LiC , ZhangZ. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res.45(W1), W98–W102 (2017).
  • YehY , GuoQ , ConnellyZet al.Wnt/Beta-Catenin signaling and prostate cancer therapy resistance. Adv. Exp. Med. Biol.1210, 351–378 (2019).
  • Rodríguez-BerrigueteG , FraileB , Martínez-OnsurbeP , OlmedillaG , PaniaguaR , RoyuelaM. MAP kinases and prostate cancer. J. Signal Transduct.2012, 1–9 (2012).
  • AzzamDG , TayJWT , GreeveMA , HarveyJM , BentelJM. ERK/MAPK regulation of the androgen responsiveness of breast cancer cells. Adv. Exp. Med. Biol.617, 429–435 (2008).
  • HeY , MiJ , OlsonAet al.Androgen receptor with short polyglutamine tract preferably enhances Wnt/β-catenin-mediated prostatic tumorigenesis. Oncogene39(16), 3276–3291 (2020).
  • SinghSK , LillardJW , SinghR. Molecular basis for prostate cancer racial disparities. Front. Biosci. (Landmark Ed.)22, 428–450 (2017).
  • ChenG , NomuraM , MorinagaHet al.Modulation of androgen receptor transactivation by FoxH1. J. Biol. Chem.280(43), 36355–36363 (2005).
  • Rodriguez-BravoV , PippaR , SongW-Met al.Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell174(5), 1200–1215.e20 (2018).
  • PeiL , PengY , YangYet al.PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res.62(19), 5420–5424 (2002).
  • YangZ , QuC-B , ZhangYet al.Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene38(14), 2516–2532 (2019).
  • LiuJ , ChengG , YangHet al.Reciprocal regulation of long noncoding RNAs THBS4-003 and THBS4 control migration and invasion in prostate cancer cell lines. Mol. Med. Rep.14(2), 1451–1458 (2016).
  • HouY , LiH , HuoW. THBS4 silencing regulates the cancer stem cell-like properties in prostate cancer via blocking the PI3K/Akt pathway. Prostate80(10), 753–763 (2020).
  • ChenX , HuangY , WangY , WuQ , HongS , HuangZ. THBS4 predicts poor outcomes and promotes proliferation and metastasis in gastric cancer. J. Physiol. Biochem.75(1), 117–123 (2019).
  • WuH , ZhangG , LiZet al.Thrombospondin-4 expression as a prognostic marker in hepatocellular carcinoma. Gene696, 219–224 (2019).
  • CoutureF , D'AnjouF , DesjardinsR , BoudreauF , DayR. Role of proprotein convertases in prostate cancer progression. Neoplasia14(11), 1032–1042 (2012).
  • WangP , WangF , WangL , PanJ. Proprotein convertase subtilisin/kexin type 6 activates the extracellular signal-regulated kinase 1/2 and Wnt family member 3A pathways and promotes in vitro proliferation, migration and invasion of breast cancer MDA-MB-231 cells. Oncol. Lett.16(1), 145–150 (2018).
  • LiS , LuX , ChiP , PanJ. Identification of Nkx2–3 and TGFB1I1 expression levels as potential biomarkers to predict the effects of FOLFOX4 chemotherapy. Cancer Biol. Ther.13(6), 443–449 (2012).
  • UekiM , TakeshitaH , UtsunomiyaNet al.Survey of single-nucleotide polymorphisms in the gene encoding human deoxyribonuclease I-like 2 producing loss of function potentially implicated in the pathogenesis of parakeratosis. PLoS One12(4), e0175083 (2017).
  • LiuC-R , MengF-H. DNASE1L2, as a carcinogenic marker, affects the phenotype of breast cancer cells via regulating epithelial–mesenchymal transition process. Cancer Biother. Radiopharm.36(2), 180–188 (2020).