1,792
Views
8
CrossRef citations to date
0
Altmetric
Review

Nanotopography in Directing Osteogenic Differentiation of Mesenchymal Stem Cells: Potency and Future Perspective

ORCID Icon & ORCID Icon
Article: FSO765 | Received 16 Aug 2021, Accepted 14 Oct 2021, Published online: 18 Nov 2021

References

  • RenB , WanY , LiuCet al.Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: an in vitro and in vivo study. Mater. Sci. Eng. C118(August 2020), 111505 (2021).
  • ZhuJ , QiZ , ZhengCet al.Enhanced cell proliferation and osteogenesis differentiation through a combined treatment of poly-L-lysine-coated PLGA/graphene oxide hybrid fiber matrices and electrical stimulation. J. Nanomater.2020, 5892506 (2020).
  • GuilakF , CohenDM , EstesBT , GimbleJM , LiedtkeW , ChenCS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell23(1), 1–7 (2009).
  • RahimnejadM , NasrollahiBoroujeni N , JahangiriSet al.Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nano-Micro Lett.13(1), 1–24 (2021).
  • AkhavanO. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. 4(19), 3169–3190 (2016).
  • BoseS , RoyM , BandyopadhyayA. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol.30(10), 546–554 (2012).
  • GroeberF , HoleiterM , HampelM , HindererS , Schenke-LaylandK. Skin tissue engineering – In vivo and in vitro applications. Adv. Drug Deliv. Rev.63(4), 352–366 (2011).
  • ChengTY , ChenMH , ChangWH , HuangMY , WangTW. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials34(8), 2005–2016 (2013).
  • HuiH , TangY , HuM , ZhaoX. Stem cells: general features and characteristics. In: Stem Cells in Clinic andResearch.GholamrezanezhadA ( Ed.), INTECH, 3–20 (2011).
  • WangM , YuanQ , XieL. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int.2018, 1–12 (2018).
  • HuangG , LiF , ZhaoXet al.Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev.117(20), 12764–12850 (2017).
  • MaY , JiY , HuangG , LingK , ZhangX , XuF. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication7(4), 44105 (2015).
  • MaY , JiY , ZhongTet al.Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomater. Sci. Eng.3(12), 3534–3545 (2017).
  • ShiN , LiY , ChangLet al.A 3D, Magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods5(6), 1–12 (2021).
  • MaY , LinM , HuangGet al.3D spatiotemporal mechanical microenvironment: a hydrogel-based platform for guiding stem cell fate. Adv. Mater.30(49), 1–27 (2018).
  • CunX , Hosta-RigauL. Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials10(10), 1–41 (2020).
  • MaY , HanT , YangQet al.Viscoelastic cell microenvironment: hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv. Funct. Mater.31(24), 1–26 (2021).
  • RossTD , CoonBG , YunSet al.Integrins in mechanotransduction. Curr. Opin. Cell Biol.25(5), 613–618 (2013).
  • ThéryM. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci.123(24), 4201–4213 (2010).
  • WuH , YiES. Epigenetic regulation of stem cell differentiation. Pediatr. Res.59(4 PART. 2), 21–25 (2006).
  • AyuningtyasFD , KimMH , Kino-okaM. Muscle lineage switching by migratory behavior-driven epigenetic modifications of human mesenchymal stem cells on a dendrimer-immobilized surface. Acta Biomater.106, 170–180 (2020).
  • UedaN , AtsutaI , AyukawaYet al.Novel application method for mesenchymal stem cell therapy utilizing its attractant-responsive accumulation property. Appl. Sci.9(22), 1–13 (2019).
  • RenX , ZhaoM , LashB , MartinoMM , JulierZ. Growth factor engineering strategies for regenerative medicine applications. Front. Bioeng. Biotechnol.7, 1–9 (2020).
  • WangY , LeeWC , MangaKKet al.Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater.24(31), 4285–4290 (2012).
  • AkhavanO , GhaderiE. Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B1(45), 6291–6301 (2013).
  • LinL , KolliparaPS , ZhengY. Digital manufacturing of advanced materials: challenges and perspective. Matter Today (Kiddlington).28, 49–62 (2019).
  • KimMJ , LeeB , YangKet al.BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials34(30), 7236–7246 (2013).
  • AmaralDL , ZanetteRSS , AlmeidaCGet al.In vitro evaluation of barium titanate nanoparticlealginate 3D scaffold for osteogenic human stem cell differentiation. Biomed. Mater. (2019). https://iopscience.iop.org/article/10.1088/2053-1583/abe778
  • LiL , HongM , SchmidtMet al.Laser nano-manufacturing – state of the art and challenges. CIRP Ann. - Manuf. Technol.60(2), 735–755 (2011).
  • DongY , WuX , ChenX , ZhouP , XuF , LiangW. Nanotechnology shaping stem cell therapy: recent advances, application, challenges, and future outlook. Biomed. Pharmacother.137, 111236 (2021).
  • TsimbouriP , GadegaardN , BurgessKet al.Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J. Cell. Biochem.115, 380–390 (2014).
  • NaganoM , HoshinoD , KoshikawaN , AkizawaT , SeikiM. Turnover of focal adhesions and cancer cell migration. Int. J. Cell Biol.2012, 310616 (2012).
  • BiggsMJP , DalbyMJ. Focal adhesions in osteoneogenesis. Proc. Inst. Mech. Eng. Part H224(12), 1441–1453 (2011).
  • DonnellyH , Salmeron-SanchezM , DalbyMJ. Designing stem cell niches for differentiation and self-renewal. J. R. Soc. Interface15(145), 20180388 (2018).
  • LegersteeK , GevertsB , SlotmanJA , HoutsmullerAB. Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci. Rep.9(1), 1–18 (2019).
  • SchaumannEN , TianB. Actin-packed topography: cytoskeletal response to curvature. Proc. Natl Acad. Sci. USA116(46), 22897–22898 (2019).
  • HengBC , ZhangX , AubelDet al.Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front. Cell Dev. Biol.8, 1–23 (2020).
  • ZhangW , YangY , CuiB. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. Curr. Opin. Solid State Mater. Sci.25(1), 100873 (2021).
  • SeongH , HigginsSG , PendersJet al.Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano14(5), 5371–5381 (2020).
  • RougerieP , dos SantosRS , FarinaM , AnselmeK. Molecular mechanisms of topography sensing by osteoblasts: an update. Appl. Sci.11(4), 1–17 (2021).
  • HutchingsG , MoncrieffL , DompeCet al.Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. J. Clin. Med.9(1), 139 (2020).
  • SunM , ChiG , XuJet al.Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res. Ther.9(1), 52 (2018).
  • KimHN , JiaoA , HwangNSet al.Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev.65(4), 536–558 (2013).
  • SchollH , BlaszczykT , LeniartA , PolanskiK. Nanotopography and electrochemical impedance spectroscopy of palladium deposited on different electrode materials. J. Solid State Electrochem.8(5), 308–315 (2004).
  • ErmisM , AntmenE , HasirciV. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact. Mater.3(3), 355–369 (2018).
  • KuvyrkovE , BrezhnevaN , UlasevichSA , SkorbEV. Sonochemical nanostructuring of titanium for regulation of human mesenchymal stem cells behavior for implant development. Ultrason. Sonochem.52, 437–445 (2019).
  • LiQ , WangZ. Involvement of fak/p38 signaling pathways in mediating the enhanced osteogenesis induced by nano-graphene oxide modification on titanium implant surface. Int. J. Nanomed.15, 4659–4676 (2020).
  • FuY , ZhangJB , LinH , MoA. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C118, 111367 (2021).
  • YangL , GeL , ZhouQ , JurczakKM , Van RijnP. Decoupling the amplitude and wavelength of anisotropic topography and the influence on osteogenic differentiation of mesenchymal stem cells using a high-throughput screening approach. ACS Appl. Bio Mater.3(6), 3690–3697 (2020).
  • YouM-H , KwakMK , KimD-Het al.Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules11(7), 1856–1862 (2010).
  • de PeppoGM , AgheliH , KarlssonCet al.Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. Int. J. Nanomed.9(1), 2499–2515 (2014).
  • HanL , ZhouJ , SunYet al.Single-crystalline, nanoporous gallium nitride films with fine tuning of pore size for stem cell engineering. J. Nanotechnol. Eng. Med.5(4), 1–9 (2015).
  • QianW , GongL , CuiXet al.Nanotopographic regulation of human mesenchymal stem cell osteogenesis. ACS Appl. Mater. Interfaces9(48), 41794–41806 (2017).
  • KhawJS , BowenCR , CartmellSH. Effect of tio2 nanotube pore diameter on human mesenchymal stem cells and human osteoblasts. Nanomaterials10(11), 1–17 (2020).
  • TongZ , LiuY , XiaRet al.F-actin regulates osteoblastic differentiation of mesenchymal stem cells on TiO2 nanotubes through MKL1 and YAP/TAZ. Nanoscale Res. Lett.15(1), 183 (2020).
  • KhrunykYY , BelikovSV , TsurkanMVet al.Surface-dependent osteoblasts response to TiO2 nanotubes of different crystallinity. Nanomaterials10(2), 1–17 (2020).
  • SteevesAJ , HoW , MunissoMCet al.The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures. Int. J. Nanomed.15, 2151–2169 (2020).
  • ZhangX , ZhangX , WangBet al.Synergistic effects of lanthanum and strontium to enhance the osteogenic activity of TiO2 nanotube biological interface. Ceram. Int.46(9), 13969–13979 (2020).
  • JarolimovaP , VoltrovaB , BlahnovaVet al.Mesenchymal stem cell interaction with Ti6Al4V alloy pre-exposed to simulated body fluid. RSC Adv.10(12), 6858–6872 (2020).
  • LiJ , MutrejaI , TredinnickS , JermyM , HooperGJ , WoodfieldTBF. Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Mater. Sci. Eng. C.109, 110562 (2020).
  • VoltrovaB , JarolimovaP , HybasekVet al.In vitro evaluation of a novel nanostructured Ti-36Nb-6Ta alloy for orthopedic applications. Nanomedicine15(19), 1843–1859 (2020).
  • TechaniyomP , TanuratP , SirivisootS. Osteoblast differentiation and gene expression analysis on anodized titanium samples coated with graphene oxide. Appl. Surf. Sci.526, 146646 (2020).
  • RoHS , ParkHJ , SeoYK. Fluorine-incorporated TiO2 nanotopography enhances adhesion and differentiation through ERK/CREB pathway. J. Biomed. Mater. Res. - Part A109(8), 1406–1417 (2020).
  • ShinYC , PangKM , HanDWet al.Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation. Mater. Sci. Eng. C99(October 2018), 1174–1181 (2019).
  • SabinoRM , MondiniG , KipperMJ , MartinsAF , PopatKC. Tanfloc/heparin polyelectrolyte multilayers improve osteogenic differentiation of adipose-derived stem cells on titania nanotube surfaces. Carbohydr. Polym.251, 117079 (2021).
  • ChenP , AsoT , SasakiRet al.Adhesion and differentiation behaviors of mesenchymal stem cells on titanium with micrometer and nanometer-scale grid patterns produced by femtosecond laser irradiation. J. Biomed. Mater. Res. Part A106(10), 2735–2743 (2018).
  • LopesHB , SouzaATP , FreitasGP , EliasCN , RosaAL , BelotiMM. Effect of focal adhesion kinase inhibition on osteoblastic cells grown on titanium with different topographies. J. Appl. Oral Sci.28, e20190156 (2020).
  • SartoriM , GrazianiG , SassoniEet al.Nanostructure and biomimetics orchestrate mesenchymal stromal cell differentiation: an in vitro bioactivity study on new coatings for orthopedic applications. Mater. Sci. Eng. C123, 112031 (2021).
  • McCaffertyMM , BurkeGA , MeenanBJ. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces. J. Tissue Eng.5, 2041731414537513 (2014).
  • HuangB , VyasC , ByunJJ , El-NewehyM , HuangZ , BártoloP. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater. Sci. Eng. C108, 110374 (2020).
  • XiaY , FanX , YangHet al.ZnO/nanocarbons-modified fibrous scaffolds for stem cell-based osteogenic differentiation. Small16(38), e2003010 (2020).
  • El-HabashySE , EltaherHM , GaballahA , ZakiEI , MehannaRA , El-KamelAH. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Mater. Sci. Eng. C119, 111599 (2021).
  • JahanmardF , BaghbanEslaminejad M , Amani-TehranMet al.Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. Mater. Sci. Eng. C106, 110163 (2020).
  • HashemzadehH , AllahverdiA , SedghiMet al.PDMS nano-modified scaffolds for improvement of stem cells proliferation and differentiation in microfluidic platform. Nanomaterials10(4), 668 (2020).
  • ZhaoC , SongX , LuX. Directional osteo-differentiation effect of hadscs on nanotopographical self-assembled polystyrene nanopit surfaces. Int. J. Nanomed.15, 3281–3290 (2020).
  • NewbySD , MasiT , GriffinCDet al.Functionalized graphene nanoparticles induce human mesenchymal stem cells to express distinct extracellular matrix proteins mediating osteogenesis. Int. J. Nanomed.15, 2501–2513 (2020).
  • GolzarH , MohammadrezaeiD , YadegariAet al.Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds. Compos. Part B Eng.185, 107749 (2020).
  • PedrosaCR , ArlD , GrysanPet al.Controlled nanoscale topographies for osteogenic differentiation of mesenchymal stem cells. ACS Appl. Mater. Interfaces11(9), 8858–8866 (2019).
  • MoriH , OguraY , EnomotoKet al.Dense carbon-nanotube coating scaffolds stimulate osteogenic differentiation of mesenchymal stem cells. PLoS ONE15(1), 1–15 (2020).
  • WongSHM , LimSS , TiongTJ , ShowPL , ZaidHFM , LohHS. Preliminary in vitro evaluation of chitosan–graphene oxide scaffolds on osteoblastic adhesion, proliferation, and early differentiation. Int. J. Mol. Sci.21(15), 1–12 (2020).
  • MaillyD , VieuC. Lithography and etching processes. In: Nanosci. Nanotechnologies Nanophysics.Dupas C, Houdy P, Lahmani M (Eds.), Springer, Berlin, GermanyDOI:10.1007/978-3-540-28617-2_1 (2007).
  • AlyobiM , CobleyR. Electron beam lithography and plasma etching to fabricate supports for studying nanomaterials. Int. J. Res. Sci.3(2), 18 (2017).
  • VenugopalG , KimS-J. Nanolithography. In: Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. INTECH, 187–206 (2013).
  • de ViteriVS , FuentesE. Titanium and titanium alloys as biomaterials. In: Tribology - Fundamentals andAdvancements.GegnerJ (Ed.). INTECH, 155–181 (2013).
  • FindikF. Titanium based biomaterials. Curr. Trends Biomed. Eng. Biosci.7(3), 52–54 (2017).
  • LascanoS , ArevaloC , Montealegre-MelendezIet al.Porous titanium for biomedical applications: evaluation of the conventional powder metallurgy frontier and space-holder technique. In: Biomaterials for Bone Tissue Engineering. Sanz-HerreraJA. ( Ed.), 31–43 (2020).
  • LeachJK , WhiteheadJ. Materials-directed differentiation of mesenchymal stem cells for tissue engineering and regeneration. ACS Biomater. Sci. Eng.4(4), 1115–1127 (2019).
  • WatariS , HayashiK , WoodJAet al.Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials33(1), 128–136 (2012).
  • ThiagarajanL , Abu-AwwadHADM , DixonJE. Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Transl. Med.6(12), 2146–2159 (2017).
  • WidyaratihDS , HagedoornPL , OttenLGet al.Towards osteogenic and bactericidal nanopatterns?Nanotechnology30(20), 20LT01 (2019).
  • DengJ , ZhaoC , WeiQ. Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration. ACS Nano.11(8), 8282–8291 (2017).
  • DeWitte TM , Fratila-ApachiteiLE , ZadpoorAA , PeppasNA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen. Biomater.5(4), 197–211 (2018).
  • JayakumarP , DiSilvio L. Osteoblasts in bone tissue engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med.224(12), 1415–1440 (2010).
  • CorralesLP , EstevesML , VickJ aime E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol.14(1), 15–56 (2014).
  • MazaheriM , AkhavanO , SimchiA. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation. Appl. Surf. Sci.301, 456–462 (2014).
  • AkhavanO , GhaderiE , ShahsavarM. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon NY59, 200–211 (2013).
  • KimJ , BaeWG , ParkSet al.Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns. 2D Mater.3(3), 1–10 (2016).
  • KangES , KimH , HanYet al.Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide. Colloids Surfaces B Biointerfaces204(April), 111807 (2021).
  • PadashA , HalabianR , SalimiA , KazemiNM , ShahrousvandM. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Hum. Cell34(2), 310–324 (2021).
  • KoEK , JeongSI , RimNG , LeeYM , ShinH , LeeB-K. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng. Part A.14(12), 2105–2119 (2008).