1,161
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Combinatory Effect of Scaffold Topography and Culture Condition: an Approach to Nucleus Pulposus Tissue Engineering

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO810 | Received 08 Dec 2021, Accepted 10 Aug 2022, Published online: 03 Oct 2022

References

  • SakaiD , AnderssonGBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol.11(4), 243–256 (2015).
  • LoiblM , Wuertz‐KozakK , VadalaG , LangS , FairbankJ , UrbanJP. Controversies in regenerative medicine: should intervertebral disc degeneration be treated with mesenchymal stem cells?Jor Spine2(1), e1043 (2019).
  • VadalàG , AmbrosioL , RussoF , PapaliaR , DenaroV. Interaction between mesenchymal stem cells and intervertebral disc microenvironment: from cell therapy to tissue engineering. Stem Cells Int.2019(Idd), Doi: 10.1155/2019/2376172. (2019).
  • KockL , Van DonkelaarCC , ItoK. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res.347(3), 613–627 (2012).
  • DetamoreMS. Human umbilical cord mesenchymal stromal cells in regenerative medicine. Stem Cell Res. Ther.4(6), 5–7 (2013).
  • WuH , ZengX , YuJetal.Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Exp. Cell Res.361(2), 324–332 (2017) .
  • BarlianA , JudawisastraH , RidwanA , WahyuniAR , LinggaME. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma. Sci. Rep.10(1), 1–18 (2020).
  • WibowoUA , JudawisastraH , BarlianA , AlfarafisaNM , MoegniKF , RemeliaM. Development of salt leached silk fibroin scaffold using direct dissolution techniques for cartilage tissue engineering. Int. J. Adv. Sci. Eng. Inf. Technol.9(3), 810–815 (2019).
  • KetenS , XuZ , IhleB , BuehlerMJ. Nanoconfinement controls stiffness, strength and mechanical toughness of Β-sheet crystals in silk. Nat. Mater.9(4), 359–367 (2010).
  • MeinelL , KaplanDL. Silk constructs for delivery of musculoskeletal therapeutics. Adv. Drug Deliv. Rev.64(12), 1111–1122 (2012).
  • UebersaxL , MattottiM , PapaloïzosM , MerkleHP , GanderB , MeinelL. Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials28(30), 4449–4460 (2007).
  • KunduB , RajkhowaR , KunduSC , WangX. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev.65(4), 457–470 (2013).
  • ZhangY , LiuX , ZengLetal.Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Adv. Funct. Mater.29(36), 1–20 (2019).
  • WuertzK , GodburnK , Neidlinger-WilkeC , UrbanJ , IatridisJC. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine (Phila. Pa. 1976).33(17), 1843–1849 (2008).
  • NaqviSM , BuckleyCT. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments. J. Anat.227(6), 757–766 (2015).
  • LiuY , LiY , NanLetal.The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochem. Funct.38(2), 130–140 (2020).
  • NaqviSM , BuckleyCT. Bone marrow stem cells in response to intervertebral disc-like matrix acidity and oxygen concentration implications for cell-based regenerative therapy. Spine (Phila. Pa. 1976).41(9), 743–750 (2016).
  • FengG , JinX , HuJetal.Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials32(32), 8182–8189 (2011).
  • ZhangZ , LiF , TianHetal.Differentiation of adipose-derived stem cells toward nucleus pulposuslike cells induced by hypoxia and a three-dimensional chitosanalginate gel scaffold in vitro. Chin. Med. J. (Engl).127(2), 314–321 (2014).
  • HudsonKD , BonassarLJ. Hypoxic expansion of human mesenchymal stem cells enhances three-dimensional maturation of tissue-engineered intervertebral discs. Tissue Eng. - Part A23(7–8), 293–300 (2017).
  • BarlianA , JudawisastraH , AlfarafisaNM , WibowoUA , RosadiI. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ2018(11), 1–20 (2018).
  • RamadhiantiPA , JudawisastraH , AnggitaV , NugrahaFR. Pore size evaluation of direct-dissolution salt-leached 3D silk fibroin scaffold using microcomputed tomography. AIP Conf. Proc.2262, 1–8 (2020).
  • VishwanathV , PramanikK , BiswasA. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J. Biomater. Sci. Polym. Ed.27(7), 657–674 (2016).
  • RosadiI , KarinaK , RoslianaIetal.In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold. Stem Cell Res. Ther.10(1), 1–15 (2019).
  • SalehinejadP , BanuAN , AliAetal.Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly. Vitr. Cell. Dev. Biol. - Anim.48(2), 75–83 (2012).
  • SionkowskaA , TuwalskaA. Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite. Int. J. Polym. Anal. Charact.25(5), 315–333 (2020).
  • ValipourF , ValipourF , RahbarghaziR , NavaliAM , RashidiMR , DavaranS. Novel hybrid polyester-polyacrylate hydrogels enriched with platelet-derived growth factor for chondrogenic differentiation of adipose-derived mesenchymal stem cells in vitro. J. Biol. Eng.15(1), 1–14 (2021).
  • DominiciM , LeBlanc K , MuellerIet al.Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8(4), 315–317 (2006).
  • JudawisastraH , NugrahaFR , WibowoUA. Porous architecture evaluation of silk fibroin scaffold from direct dissolution salt leaching method. Macromol. Symp.391(1), 1–5 (2020).
  • AyatollahiM. Conditions to improve expansion of human mesenchymal stem cells based on rat samples. World J. Stem Cells4(1), 1–8 (2012).
  • AramwitP , KanokpanontS , De-EknamkulW , SrichanaT. Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng.107(5), 556–561 (2009).
  • MallisP , BoulariD , MichalopoulosE , DinouA , Spyropoulou-VlachouM , Stavropoulos-GiokasC. Evaluation of HLA-G expression in multipotent mesenchymal stromal cells derived from vitrified wharton's jelly tissue. Bioengineering5(4), 10.3390/bioengineering5040095 (2018).
  • MandalBB , KunduSC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials30(15), 2956–2965 (2009).
  • ZhangX , CaoC , MaX , LiY. Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions. J. Mater. Sci. Mater. Med.23(2), 315–324 (2012).
  • YanLP , OliveiraJM , OliveiraAL , CaridadeSG , ManoJF , ReisRL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater.8(1), 289–301 (2012).
  • IzadifarZ , ChenX , KulykW. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J. Funct. Biomater.3(4), 799–838 (2012).
  • YangM , ShuaiY , HeW , MinS , ZhuL. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Int. J. Mol. Sci.13(6), 7762–7775 (2012).
  • ChenG , SatoT , UshidaTetal.The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J. Biomed. Mater. Res. - Part A67(4), 1170–1180 (2003).
  • EricksonIE , HuangAH , SenguptaS , KestleS , BurdickJA , MauckRL. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr. Cartil.17(12), 1639–1648 (2009).
  • MaD , WangY , DaiW. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Mater. Sci. Eng. C89(23), 456–469 (2018).
  • AcharyaC , GhoshSK , KunduSC. Silk fibroin film from non-mulberry tropical tasar silkworms: a novel substrate for in vitro fibroblast culture. Acta Biomater.5(1), 429–437 (2009).
  • SunW , GregoryDAa , TomehMA , ZhanX. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci.22(1499), 1–28 (2021).
  • JolyP , DudaG , SchöneMetal.Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization. PLOS ONE8(9), 1–11 (2013).
  • AmsarRM , BarlianA , JudawisastraH , WibowoUA , KarinaK. Cell penetration and chondrogenic differentiation of human adipose derived stem cells on 3D scaffold. Futur. Sci. OA7(8), 1–12 (2021).
  • YamaneS , Iwasaki , NorimasaKYetal.Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J. Biomed. Mater. Res. Part A81A(3), 586–593 (2007).
  • LienSM , KoLY , HuangTJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater.5(2), 670–679 (2009).
  • vonder Mark K , ParkJ. Engineering biocompatible implant surfaces. Prog. Mater. Sci.58(3), 327–381 (2013).
  • HeywoodHK , NalessoG , LeeDA , Dell'AccioF. Culture expansion in low-glucose conditions preserves chondrocyte differentiation and enhances their subsequent capacity to form cartilage tissue in three-dimensional culture. Biores. Open Access3(1), 9–18 (2014).
  • WidowatiW , WijayaL , BachtiarIet al.Effect of oxygen tension on proliferation and characteristics of Wharton's jelly-derived mesenchymal stem cells. Biomarkers Genomic Med.6(1), 43–48 (2014).
  • NekantiU , DastidarS , VenugopalP , ToteyS , TaM. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. Int. J. Biol. Sci.6(5), 499–512 (2010).
  • LavrentievaA , MajoreI , KasperC , HassR. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun. Signal.8, 1–9 (2010).
  • MajumdarD , BhondeR , DattaI. Influence of ischemic microenvironment on human Wharton's Jelly mesenchymal stromal cells. Placenta34(8), 642–649 (2013).
  • WangJ , TaoY , ZhouXetal.The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment. Exp. Biol. Med.241(18), 2104–2111 (2016).
  • Illien-JüngerS , PattapaS , PeroglioMetal.Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine (Phila. Pa. 1976).37(22), 1865–1873 (2012).
  • FarrellMJ , ComeauES , MauckRL. Mesenchymal stem cells produce functional cartilage matrix in three- dimensional culture in regions of optimal nutrient supply. Eur. Cells Mater.23, 425–440 (2012).
  • BuckleyCT , MeyerEG , KellyDJ. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells. Tissue Eng. - Part A18(3–4), 382–396 (2012).
  • PeckSH , BendigoJ , TobiasJetal.Hypoxic Preconditioning Enhances Bone Marrow–Derived Mesenchymal Stem Cell Survival in a Low Oxygen and Nutrient-Limited 3D Microenvironment. Cartilage2019, 1–14 (2019).
  • StuderD , MillanC , ÖztürkE , Maniura-WeberK , Zenobi-WongM. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur. Cells Mater.24, 118–135 (2012).
  • UsamiY , GunawardenaAT , IwamotoM , Enomoto-IwamotoM. Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab. Investig.96(2), 186–196 (2016).
  • YangC , ZhongZF , WangSP , VongCT , YuB , WangYT. HIF-1: structure, biology and natural modulators. Chin. J. Nat. Med.19(7), 521–527 (2021).
  • LekvijittadaK , HosomichiJ , MaedaHetal.Intermittent hypoxia inhibits mandibular cartilage growth with reduced TGF-β and SOX9 expressions in neonatal rats. Sci. Rep11(1), 1–12 (2021).