761
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intranasally Applied Human Olfactory Mucosa Neural Progenitor Cells Migrate to Damaged Brain Regions

ORCID Icon, ORCID Icon, ORCID Icon, , &
Article: FSO806 | Received 02 Mar 2022, Accepted 27 Jun 2022, Published online: 13 Jul 2022

References

  • TaylorCA , BellJM , BreidingMJ , XuL. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill. Summ.66(9), 1–16 (2017).
  • ZaloshnjaE , MillerT , LangloisJA , SelassieAW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil.23(6), 394–400 (2008).
  • BjorklundGR , AndersonTR , StabenfeldtSE. Recent advances in stem cell therapies to address neuroinflammation, stem cell survival, and the need for rehabilitative therapies to treat traumatic brain injuries. Int. J. Mol. Sci.22(4), 1–12 (2021).
  • SumanS , DominguesA , RatajczakJ , RatajczakMZ. Potential clinical applications of stem cells in regenerative medicine. Adv. Exp. Med. Biol.1201, 1–22 (2019).
  • YoonYS , ParkJS , TkebuchavaT , LuedemanC , LosordoDW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation109(25), 3154–3157 (2004).
  • MagownP , BrownstoneRM , RafuseVF. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann. Clin. Transl. Neurol.3(8), 637–649 (2016).
  • Ben-DavidU , BenvenistyN. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer11(4), 268–277 (2011).
  • Benitez-KingG , Valdes-TovarM , TruetaCet al.The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol. Cell. Neurosci.73, 84–95 (2016).
  • EscadaPA , LimaC , DaSilva JM. The human olfactory mucosa. Eur. Arch. Otorhinolaryngol.266(11), 1675–1680 (2009).
  • Benítez-KingG , RiquelmeA , Ortíz-LópezLet al.A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J. Neurosci. Methods201(1), 35–45 (2011).
  • LimaC , EscadaP , Pratas-VitalJet al.Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil. Neural. Repair24(1), 10–22 (2010).
  • HeJ , LiuJ , HuangYet al.Olfactory mucosa mesenchymal stem cells alleviate cerebral ischemia/reperfusion injury via golgi apparatus secretory pathway Ca(2+) -ATPase isoform1. Front. Cell Dev. Biol.8, 586541 (2020).
  • LiuJ , HuangY , HeJet al.Olfactory mucosa mesenchymal stem cells ameliorate cerebral ischemic/reperfusion injury through modulation of UBIAD1 expression. Front. Cell Neurosci.14, 580206 (2020).
  • VeronAD , Bienboire-FrosiniC , GirardSDet al.Syngeneic transplantation of olfactory ectomesenchymal stem cells restores learning and memory abilities in a rat model of global cerebral ischemia. Stem Cells Int.2018, 2683969 (2018).
  • DelormeB , NivetE , GaillardJet al.The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev.19(6), 853–866 (2010).
  • MarshallCT , GuoZ , LuCet al.Human adult olfactory neuroepithelial derived progenitors retain telomerase activity and lack apoptotic activity. Brain Res.1045(1-2), 45–56 (2005).
  • RuiK , LinX , TianJet al.Ecto-mesenchymal stem cells: a new player for immune regulation and cell therapy. Cell Mol. Immunol.15(1), 82–84 (2018).
  • GirardSD , DevézeA , NivetE , GepnerB , RomanFS , FéronF. Isolating nasal olfactory stem cells from rodents or humans. J. Vis. Exp. 1–5 (2011).
  • ChoiR , GoncalvesS , DuranteMA , GoldsteinBJ. On the in vivo origin of human nasal mesenchymal stem cell cultures. Laryngoscope Investig .Otolaryngol.5(6), 975–982 (2020).
  • ZhangHL , XieXF , XiongYQet al.Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res.1680, 143–154 (2018).
  • ZhangL , LiY , RomankoMet al.Different routes of administration of human umbilical tissue-derived cells improve functional recovery in the rat after focal cerebral ischemia. Brain Res.1489, 104–112 (2012).
  • DuG , LiuY , DangMet al.Comparison of administration routes for adipose-derived stem cells in the treatment of middle cerebral artery occlusion in rats. Acta Histochem.116(6), 1075–1084 (2014).
  • KawaboriM , KurodaS , SugiyamaTet al.Intracerebral, but not intravenous, transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct: an optical imaging study. Neuropathology32(3), 217–226 (2012).
  • ArvidssonA , CollinT , KirikD , KokaiaZ , LindvallO. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med.8(9), 963–970 (2002).
  • StrichSJ. Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J. Neurol. Neurosurg. Psychiatry19(3), 163–185 (1956).
  • AdamsJH , DoyleD , FordI , GennarelliTA , GrahamDI , MclellanDR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology15(1), 49–59 (1989).
  • FischerUM , HartingMT , JimenezFet al.Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev.18(5), 683–692 (2009).
  • WalczakP , ZhangJ , GiladAAet al.Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke39(5), 1569–1574 (2008).
  • CoppinL , SokalE , StephenneX. Thrombogenic risk induced by intravascular mesenchymal stem cell therapy: current status and future perspectives. Cells8(10), 1–16 (2019).
  • ChristyBA , HerzigMC , MontgomeryRKet al.Procoagulant activity of human mesenchymal stem cells. J. Trauma Acute Care Surg.83(1 Suppl. 1), S164–S169 (2017).
  • ForostyakS , HomolaA , TurnovcovaK , SvitilP , JendelovaP , SykovaE. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells32(12), 3163–3172 (2014).
  • LeeJY , KimHS , KimSH , KimHS , ChoBP. Combination of human mesenchymal stem cells and repetitive transcranial magnetic stimulation enhances neurological recovery of 6-hydroxydopamine model of Parkinsonian's disease. Tissue Eng. Regen. Med.17(1), 67–80 (2020).
  • HongB , ApedjinouA , HeisslerHEet al.Effect of a bundle approach on external ventricular drain-related infection. Acta Neurochir. (Wien)163(4), 1135–1142 (2021).
  • DanielyanL , SchaferR , Von Ameln-MayerhoferAet al.Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res.14(1), 3–16 (2011).
  • DanielyanL , SchaferR , Von Ameln-MayerhoferAet al.Intranasal delivery of cells to the brain. Eur. J. Cell Biol.88(6), 315–324 (2009).
  • Van VelthovenCT , KavelaarsA , Van BelF , HeijnenCJ. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav. Immun.24(3), 387–393 (2010).
  • Van VelthovenCT , KavelaarsA , Van BelF , HeijnenCJ. Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr. Res.68(5), 419–422 (2010).
  • NinomiyaK , IwatsukiK , OhnishiY , OhkawaT , YoshimineT. Intranasal delivery of bone marrow stromal cells to spinal cord lesions. J. Neurosurg. Spine23(1), 111–119 (2015).
  • SimorghS , AlizadehR , ShabaniRet al.Olfactory mucosa stem cells delivery via nasal route: a simple way for the treatment of Parkinson disease. Neurotox. Res. 39(3), 598–608 (2021).
  • DasM , MayilsamyK , TangXet al.Pioglitazone treatment prior to transplantation improves the efficacy of human mesenchymal stem cells after traumatic brain injury in rats. Sci. Rep.9(1), 13646 (2019).
  • LuMH , JiWL , ChenHet al.Intranasal transplantation of human neural stem cells ameliorates Alzheimer's disease-like pathology in a mouse model. Front Aging Neurosci.13, 650103 (2021).
  • WuS , LiK , YanYet al.Intranasal delivery of neural stem cells: a CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J. Clin. Cell Immunol.4(3), (2013).
  • ChauMJ , DeveauTC , GuXet al.Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neurosci.19(1), 20 (2018).
  • HallM , WangY , GranholmAC , StevensJO , YoungD , HofferBJ. Comparison of fetal rabbit brain xenografts to three different strains of athymic nude rats: electrophysiological and immunohistochemical studies of intraocular grafts. Cell Transplant.1(1), 71–82 (1992).
  • FodaMA , MarmarouA. A new model of diffuse brain injury in rats. Part II: morphological characterization. J. Neurosurg.80(2), 301–313 (1994).
  • MarmarouA , FodaMA , VanDen Brink W , CampbellJ , KitaH , DemetriadouK. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J. Neurosurg.80(2), 291–300 (1994).
  • MeaneyDF , MarguliesSS , SmithDH. Diffuse axonal injury. J. Neurosurg.95(6), 1108–1110 (2001).
  • ZhangL , GuraoM , YangKH , KingAI. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model. J. Neurosci. Methods198(1), 93–98 (2011).
  • CaiJ , ZhangX , WangX , LiC , LiuG. In vivo MR imaging of magnetically labeled mesenchymal stem cells transplanted into rat liver through hepatic arterial injection. Contrast Media Mol. Imaging3(2), 61–66 (2008).
  • DeOlmos J , HardyH , HeimerL. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol.181(2), 213–244 (1978).
  • WestergrenH , YuWR , FarooqueM , HoltzA , OlssonY. Systemic hypothermia following spinal cord compression injury in the rat: axonal changes studied by beta-APP, ubiquitin, and PGP 9.5 immunohistochemistry. Spinal Cord37(10), 696–704 (1999).
  • GreerJE , McginnMJ , PovlishockJT. Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J. Neurosci.31(13), 5089–5105 (2011).
  • MoodySA , QuiggMS , FrankfurterA. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-beta-tubulin monoclonal antibody. J. Comp. Neurol.279(4), 567–580 (1989).
  • KomuroH , YacubovaE , YacubovaE , RakicP. Mode and tempo of tangential cell migration in the cerebellar external granular layer. J. Neurosci.21(2), 527–540 (2001).
  • GomesFM , RamosIB , WendtCet al.New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4′,6-diamidino-2-phenylindole (DAPI)-staining. Eur. J. Histochem.57(4), e34 (2013).
  • NguyenSM , LievenCJ , LevinLA. Simultaneous labeling of projecting neurons and apoptotic state. J. Neurosci. Methods161(2), 281–284 (2007).
  • GaleanoC , QiuZ , MishraAet al.The route by which intranasally delivered stem cells enter the central nervous system. Cell Transplant.27(3), 501–514 (2018).
  • DhuriaSV , HansonLR , FreyWH2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J. Pharm. Sci.99(4), 1654–1673 (2010).
  • ShahrorRA , WuCC , ChiangYH , ChenKY. Tracking superparamagnetic iron oxide-labeled mesenchymal stem cells using MRI after intranasal delivery in a traumatic brain injury murine model. J. Vis. Exp.1–7 (2019).
  • IliffJJ , WangM , LiaoYet al.A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med.4(147), 147ra111 (2012).
  • AspelundA , AntilaS , ProulxSTet al.A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med.212(7), 991–999 (2015).
  • LouveauA , SmirnovI , KeyesTJet al.Structural and functional features of central nervous system lymphatic vessels. Nature523(7560), 337–341 (2015).
  • AbsintaM , HaSK , NairGet al.Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6, 1–15 (2017).
  • MezeyÉ , SzalayovaI , HogdenCTet al.An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl Acad. Sci. USA118(3), 1–12 (2021).
  • WatkinsS , RobelS , KimbroughIF , RobertSM , Ellis-DaviesG , SontheimerH. Disruption of astrocyte-vascular coupling and the blood–brain barrier by invading glioma cells. Nat. Commun.5, 4196 (2014).
  • JohnstonM , ZakharovA , PapaiconomouC , SalmasiG , ArmstrongD. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res.1(1), 2 (2004).
  • LuskinMB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron11(1), 173–189 (1993).
  • ImitolaJ , RaddassiK , ParkKIet al.Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA101(52), 18117–18122 (2004).
  • RosenkranzK , KumbruchS , LebermannKet al.The chemokine SDF-1/CXCL12 contributes to the ‘homing’ of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain. J. Neurosci. Res.88(6), 1223–1233 (2010).
  • YanYP , SailorKA , LangBT , ParkSW , VemugantiR , DempseyRJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab.27(6), 1213–1224 (2007).
  • MarmarouCR , WalkerSA , DavisCL , PovlishockJT. Quantitative analysis of the relationship between intra-axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. J. Neurotrauma22(10), 1066–1080 (2005).
  • MoriwakiT , IwatsukiK , Mochizuki-OdaNet al.Presence of trans-synaptic neurons derived from olfactory mucosa transplanted after spinal cord injury. Spine (Phila Pa 1976)39(16), 1267–1273 (2014).