672
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SARS-CoV-2-induced phosphorylation and its pharmacotherapy backed by artificial intelligence and machine learning

, , , , & ORCID Icon
Article: FSO917 | Received 16 Jun 2023, Accepted 04 Oct 2023, Published online: 10 Jan 2024

References

  • Tao K, Tzou PL, Nouhin J et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22, 757–773 (2021).
  • Ruiz-Sternberg AM, Chaparro-Solano HM, Albornóz LL et al. Genomic characterization of SARS-CoV-2 and its association with clinical outcomes: a 1-year longitudinal study of the pandemic in Colombia. Int. J. Infect. Dis. 116, 91–100 (2022).
  • Chatterjee B, Thakur SS. SARS-CoV-2 infection triggers phosphorylation: potential target for anti-COVID-19 therapeutics. Front. Immunol. 13, 1–14 (2022).
  • Bouhaddou M, Memon D, Meyer B et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 180, 685–712 (2020).
  • Szklarczyk D, Gable AL, Lyon D et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
  • Davidson AD, Williamson MK, Lewis S et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 12, 1–15 (2020).
  • Klann K, Bojkova D, Tascher G. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol. Cell. 80, 164–174 (2020).
  • Hekman RM, Hume AJ, Goel RK et al. Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2. Mol. Cell. 80, 1104–1122 (2020).
  • Alavizadeh SH, Doagooyan M, Zahedipour F et al. Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19. IET Nanobiotechnol. 16(3), 67–77 (2022).
  • Luttens A, Gullberg H, Abdurakhmanov E et al. Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J. Am. Chem. Soc. 144, 2905–2920 (2022).
  • Clyde A, Galanie S, Kneller DW et al. High-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitor. J. Chem. Inf. Model. 62, 116–128 (2022).
  • Chiu W, Verschueren L, Van den Eynde C et al. Development and optimization of a high-throughput screening assay for in vitro anti-SARS-CoV-2 activity: Evaluation of 5676 Phase 1 Passed Structures. J. Med. Virol. 94, 3101–3111 (2022).
  • C Gorgulla C, Das KMP, Leigh KE et al. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience. 24(2), 102021 (2021).
  • Yamamoto KZ, Yasuo N, Sekijima M. Screening for inhibitors of main protease in SARS-CoV-2: in silico and in vitro approach avoiding peptidyl secondary amides. J. Chem. Inf. Model. 62, 350–358 (2022).
  • Pohler A, Abdelfatah S, Riedl M et al. Potential coronaviral inhibitors of the nucleocapsid protein identified in silico and in vitro from a large natural product library. Pharmaceuticals. 15(9), 1046 (2022).
  • Yadav R, Imran M, Dhamija P, Suchal K, Handu S. Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2, J. Biomol. Struct. Dyn. 39, 4433–4448 (2021).
  • Li Z, Li X, Huang Y-Y et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl Acad. Sci. 117, 27381–27387 (2020).
  • MorselliGysi D, Valle ÍD, Zitnik M et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci. USA 118, e2025581118 (2021).
  • Ahmed F, Soomro AM, Chethikkattuveli Salih AR et al. A comprehensive review of artificial intelligence and network based approaches to drug repurposing in Covid-19. Biomed. Pharmacother. 153, 113350 (2022).
  • Hofmarcher M, Mayr A, Rumetshofer E et al. Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks. SSRN Electron. J. 1–7 (2020).
  • Pillaiyar T, Laufer S. Kinases as potential therapeutic targets for anti-coronaviral therapy. J. Med. Chem. 65, 955–982 (2022).
  • Liu X, Verma A, Garcia G et al. Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proc. Natl Acad. Sci. USA 118, e2113401118 (2021).
  • Gordon DE, Jang GM, Bouhaddou M et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
  • Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 18(1), 104–123 (2022).
  • Cheng C, Qi RZ, Paudel H, Zhu J. Regulation and function of protein kinases and phosphatases. Enzyme Res. 79408.9 (2011).
  • Deng K, Liu L, Tan X et al. WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal. Transduct. Target Ther. 5, 36 (2020).
  • Theivendren P, Kunjiappan S, Yashoda MY et al. Importance of protein kinase and its inhibitor: A Review. In: Protein kinases. Singh RK ( Ed.). (2021).
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).
  • Zhu N, Zhang D, Wang W et al. A novel coronavirus from patients with pneumonia in China, 2019. NEJM. 382(8), 727–733 (2020).
  • Bouhaddou M, Memon D, Meyer B et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182(3), 685–712.e19 (2020).
  • Bojkova D, Klann K, Koch B et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583(7816), 469–472 (2020).
  • Daniloski Z, Jordan TX, Wessels HH et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 184(1), 92–105.e16 (2021).
  • Xia H, Cao Z, Xie X et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 33(1), 108234 (2020).
  • Swayamsiddha S, Rath S. Antisense oligonucleotide therapy: the road less traveled in SARS-CoV-2 treatment. Front. Mol. Biosci. 8, 675583 (2021).
  • Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum. Mutat. 30(8), 1237–1244 (2009).
  • Choi Y. A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine. 414–417 (2012).
  • Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4(7), 1073–1081 (2009).
  • Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinform. 21(10), 2518–2525 (2005).
  • Pejaver V, Hsu WL, Xin F et al. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci. 26(2), 262–274 (2017).
  • Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 35(11), 3823–3835 (2007).
  • Kozakov D, Hall DR, Xia B et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255–278 (2017).
  • Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 20(23), 2839–2860 (2013).
  • Xu L, Sun J, Lu Z, Yao J, Wang Y. A large-scale screening of host-directed compounds for theinhibition of SARS-CoV-2 infection. Signal transduction and targeted therapy. 5(1), 1–3 (2020).
  • Shannon A, Selisko B, Le NT et al. Rapid incorporation of favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 11(1), 1–9 (2020).
  • Cho A, Saunders OL, Butler T et al. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7, 9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 22(5), 2207–2209 (2012).
  • Cameron CE, Castro C, Arnold JJ. The mechanism of action of ribavirin: lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase. Curr. Opin. Infect. Dis. 23(3), 231–236 (2010).
  • Peters HL, Jochmans D, de Wilde AH et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg. Med. Chem. Lett. 25(13), 2923–2926 (2015).
  • Matsuyama S, Nao N, Shirato K et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117(13), 7001–7003 (2020).
  • Li Q, Kang C, Zhang Y, Chen R. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B. 10(7), 1228–1238 (2020).
  • Yin W, Mao C, Luan X et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368(6498), 1499–1504 (2020).
  • Feldmann H, Sprecher A, Geisbert T, Zaki S. Filoviridae: Marburg and Ebola Viruses. In: Advances in Virus Research. Academic Press, 100, 307–337 (2020).
  • Gautret P, Lagier JC, Parola P et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56(1), 105949 (2020).
  • Cao B, Wang Y, Wen D et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382(19), 1787–1799 (2020).
  • Bojkova D, Klann K, Koch B et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583(7816), 469–472 (2020).
  • Xia H, Cao Z, Xie X et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33(1), 108234 (2020).