399
Views
0
CrossRef citations to date
0
Altmetric
Review

Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects

ORCID Icon & ORCID Icon
Article: FSO935 | Received 14 Sep 2023, Accepted 06 Nov 2023, Published online: 11 Mar 2024

References

  • Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Global Health J. 7(2), 70–77 (2023).
  • Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 12(7), 3028–3048 (2022).
  • Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 5(6), 1593–1615 (2022).
  • Ovais M, Zia N, Khalil AT, Ayaz M, Khalil A, Ahmad I. Nanoantibiotics: recent developments and future prospects. Front. Clin. Drug Res. Anti Infect. 5, 158 (2019).
  • Karunakaran H, Krithikadatta J, Doble M. Local and systemic adverse effects of nanoparticles incorporated in dental materials- a critical review. Saudi Dent. J. doi: 10.1016/j.sdentj.2023.08.013 (2023).
  • Patel SK, Choi SH, Kang YC, Lee J-K. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk–shell particles: a promising support for enzyme immobilization. Nanoscale 8(12), 6728–6738 (2016).
  • Mohamed HEA, Afridi S, Khalil AT, Ali M, Zohra T, Salman M et al. Bio-redox potential of Hyphaene thebaica in bio-fabrication of ultrafine maghemite phase iron oxide nanoparticles (Fe2O3 NPs) for therapeutic applications. Mater Sci. Eng. C Mater. Biol. Appl. 112, 110890 (2020).
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011).
  • Nath D, Banerjee P. Green nanotechnology - a new hope for medical biology. Environ. Toxicol. Pharmacol. 36(3), 997–1014 (2013).
  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 3(11), 1941–1949 (2007).
  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 713(1), 44 (2018).
  • Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TT et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 87(6), 1037–1052 (2013).
  • Wang J, Chen HJ, Hang T, Yu Y, Liu G, He G et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13(11), 1078–1086 (2018).
  • Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 82(4), 489–494 (2011).
  • Ovais M, Khalil AT, Ayaz M, Ahmad I. Biosynthesized metallic nanoparticles as emerging cancer theranostics agents. Nanotheranostics: Applications and Limitations. Springer International Publishing, Cham 229–244 (2019).
  • Chouke PB, Shrirame T, Potbhare AK, Mondal A, Chaudhary AR, Mondal S et al. Bioinspired metal/metal oxide nanoparticles: a road map to potential applications. Mater Today Adv. 16, 100314 (2022).
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 60(11), 1289–1306 (2008).
  • Younas W, Khan FU, Zaman M, Lin D, Zuberi A, Wang Y. Toxicity of synthesized silver nanoparticles in a widespread fish: a comparison between green and chemical. Sci. Total Environ. 845, 157366 (2022).
  • Bin Saeed HA, Daghestani MH, Ambreen K, Daghestani MH, Al-Zahrani SA, Alobaid H et al. Low dose of green synthesized silver nanoparticles is sufficient to cause strong cytotoxicity via its cytotoxic efficiency and modulatory effects on the expression of pik3ca and kras oncogenes, in lung and cervical cancer cells. J. Clust. Sci. 34(5), 2471–2485 (2023).
  • Aljohani FS, Hamed MT, Bakr BA, Shahin YH, Abu-Serie MM, Awaad AK et al. In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Sci. Rep. 12(1), 6269 (2022).
  • Patiño-Ruiz D, Sánchez-Botero L, Tejeda-Benitez L, Hinestroza J, Herrera A. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: nanotoxicological considerations for potential environmental applications. Environ. Nanotechnol. Monit. Manag. 14, 100377 (2020).
  • Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 270974 (2011).
  • Borehalli Mayegowda S, Roy A, N G M, Pandit S, Alghamdi S, Almehmadi M et al. Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review. Front Cell Infect Microbiol. 13, 1224778 (2023).
  • Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M et al. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin. Cancer Biol. 86, 693–705 (2022).
  • Ventola CL. The nanomedicine revolution: part 1: emerging concepts. P T. 37(9), 512–525 (2012).
  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 62(3), 346–361 (2010).
  • Nikolova MP, Joshi PB, Chavali MS. Updates on biogenic metallic and metal oxide nanoparticles: therapy, drug delivery and cytotoxicity. Pharmaceutics 15(6), 1650 (2023).
  • Kotcherlakota R, Das S, Patra CR. Chapter 16 - Therapeutic applications of green-synthesized silver nanoparticles. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, NY, USA, 389–428 (2019).
  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B. Biointerfaces 107, 227–234 (2013).
  • Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from Marine Algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. 199(5), 1812–1822 (2021).
  • Daei S, Ziamajidi N, Abbasalipourkabir R, Khanaki K, Bahreini F. Anticancer effects of gold nanoparticles by inducing apoptosis in bladder cancer 5637 cells. Biol. Trace Elem. Res. 200(6), 2673–2683 (2022).
  • Matbou Riahi M, Sahebkar A, Sadri K, Nikoofal-Sahlabadi S, Jaafari MR. Stable and sustained release liposomal formulations of celecoxib: in vitro and in vivo anti-tumor evaluation. Int. J. Pharm. 540(1–2), 89–97 (2018).
  • Yang X, Wang D, Zhu J, Xue L, Ou C, Wang W et al. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chem. Sci. 10(13), 3779–3785 (2019).
  • Zhang Y, Wu Y, Yan Y, Ma Y, Tu L, Shao J et al. Dual-targeted nanoparticle-in-microparticle system for ulcerative colitis therapy. Adv. Healthc. Mater. e2301518 (2023).
  • Ağçeli GK, Hammachi H, Kodal SP, Cihangir N, Aksu Z. A novel approach to synthesize TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. J. Inorg. Organomet. Polym. Mater. 30(8), 3221–3229 (2020).
  • Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv. 14(1), 123–136 (2017).
  • Peiris PM, Deb P, Doolittle E, Doron G, Goldberg A, Govender P et al. Vascular targeting of a gold nanoparticle to breast cancer metastasis. J. Pharm. Sci. 104(8), 2600–2610 (2015).
  • Niu S, Li X, Guo Z, Wan D, Liu Y, Li L et al. A strategy to improve the solubility and bioavailability of the insoluble drug piperlongumine through albumin nanoparticles. Pak. J. Pharm. Sci. 36(2), 483–490 (2023).
  • Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front. Bioeng. Biotechnol. 10, 1038250 (2022).
  • Girbes ARJ, Robert R, Marik PE. The dose makes the poison. Intensive Care Med. 42(4), 632 (2016).
  • Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 614094 (2012).
  • Durnev AD. Toxicology of nanoparticles. Bull. Exp. Biol. Med. 145(1), 72–74 (2008).
  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89(1), 338–347 (2006).
  • Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A et al. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays, and methods. Toxicol. Sci. 164(2), 391–416 (2018).
  • Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A et al. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 3), S855–S872 (2018).
  • Aswani R, Radhakrishnan EK. Chapter 5 - Green approaches for nanotechnology. Green Functionalized Nanomaterials for Environmental Applications. Elsevier, NY, USA, 129–154 (2022).
  • Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 13(3), 223–245 (2020).
  • Li H, Li Y, Zhang Y, Liang C, Wang H, Li B et al. Fabrication and properties of carbon-encapsulated cobalt nanoparticles over nacl by cvd. Nanoscale Res. Lett. 11(1), 432 (2016).
  • Wang K, Li Y, Wang H, Qian Z, Zhu X, Hussain S et al. CdSSe Nano-Flowers for ultrasensitive raman detection of antibiotics. Molecules. 28(7), 2980 (2023).
  • Carlsson J-O, Martin PM. Chapter 7 - Chemical Vapor Deposition. Handbook of Deposition Technologies for Films and Coatings. (3rd Edition). 314–363 William Andrew Publishing, MA, USA (2010).
  • Xu L, Tetreault AR, Khaligh HH, Goldthorpe IA, Wettig SD, Pope MA. Continuous Langmuir-Blodgett deposition and transfer by controlled edge-to-edge assembly of floating 2d materials. Langmuir. 35(1), 51–59 (2019).
  • Swierczewski M, Bürgi T. Langmuir and Langmuir-Blodgett films of gold and silver nanoparticles. Langmuir. 39(6), 2135–2151 (2023).
  • Tahir MB, Rafique M, Rafique MS, Nawaz T, Rizwan M, Tanveer M. Chapter 8 - Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals. Nanotechnology and Photocatalysis for Environmental Applications. Elsevier, NY, USA, 119–138 (2020).
  • Majumder S. Synthesis methods of nanomaterials for visible light photocatalysis. Nanostructured Materials for Visible Light Photocatalysis. Elsevier, NY, USA, 47–113 (2022).
  • Phakatkar AH, Saray MT, Rasul MG, Sorokina LV, Ritter TG, Shokuhfar T et al. Ultrafast synthesis of high entropy oxide nanoparticles by flame spray pyrolysis. Langmuir. 37(30), 9059–9068 (2021).
  • Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH et al. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv Mat Sci Eng. 2021, 5102014 (2021).
  • Gonçalves MC. Sol-gel silica nanoparticles in medicine: a natural choice. design, synthesis and products. Molecules. 23(8), 2021 (2018).
  • González CMO, Morales EMC, Tellez ADMN, Quezada TES, Kharissova OV, Méndez-Rojas MA. Chapter 18 - CO2 capture by MOFs. Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier, NY, USA, 407–448 (2021).
  • Ghoshal T, Biswas S, Paul M, De SK. Synthesis of ZnO nanoparticles by solvothermal method and their ammonia sensing properties. J. Nanosci. Nanotechnol. 9(10), 5973–5980 (2009).
  • Bajaj NS, Joshi RA. Chapter 3 - Energy materials: synthesis and characterization techniques. Energy Materials. Elsevier, NY, USA, 61–82 (2021).
  • de la Fuente-Jiménez JL, Rodríguez-Rivas CI, Mitre-Aguilar IB, Torres-Copado A, García-López EA, Herrera-Celis J et al. A Comparative and critical analysis for in vitro cytotoxic evaluation of magneto-crystalline zinc ferrite nanoparticles using mtt, crystal violet, ldh, and apoptosis assay. Int. J. Mol. Sci. 24(16), 12860 (2023).
  • Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 5(4), 397–417 (2012).
  • Chen Y, Zhang F, Wang Q, Lin H, Tong R, An N et al. The synthesis of LA-Fe3O4@PDA-PEG-DOX for photothermal therapy-chemotherapy. Dalton Trans. 47(7), 2435–2443 (2018).
  • Han H, Huang Z, Lee W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today. 9(3), 271–304 (2014).
  • Liang LY, Kung YH, Hsiao VKS, Chu CC. Reduction of nitroaromatics by gold nanoparticles on porous silicon fabricated using metal-assisted chemical etching. Nanomaterials. 13(11), 1805 (2023).
  • Balachandran A, Sreenilayam SP, Madanan K, Thomas S, Brabazon D. Nanoparticle production via laser ablation synthesis in solution method and printed electronic application - A brief review. Results Eng. 16, 100646 (2022).
  • Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A et al. The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics. 7(3), 67 (2018).
  • Dawber M. Sputtering techniques for epitaxial growth of complex oxides. Epitaxial Growth of Complex Metal Oxides. Woodhead Publishing, NY, USA, 31–45 (2015).
  • Zhu M, Nguyen MT, Chau YR, Deng L, Yonezawa T. Pt/Ag Solid Solution Alloy Nanoparticles in Miscibility Gaps Synthesized by Cosputtering onto Liquid Polymers. Langmuir. 37(19), 6096–6105 (2021).
  • Virji MA, Stefaniak AB. A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures. Comprehensive Materials Processing. Elsevier, NY, USA, 103–125 (2014).
  • Toozandehjani M, Matori KA, Ostovan F, Abdul Aziz S, Mamat MS. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy. Materials. 10(11), 1232 (2017).
  • Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules. 12(1), 31 (2021).
  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int. J. Mol. Sci. 19(12), 4100 (2018).
  • Busi S, Rajkumari J. Chapter 15 - Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications. Nanoparticles in Pharmacotherapy. William Andrew Publishing, NY, USA 485–524 (2019).
  • Guilger-Casagrande M, de Lima R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 7, 287 (2019).
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J. Hazard Mater. 325, 36–58 (2017).
  • Nande A, Raut S, Michalska-Domanska M, Dhoble SJ. Green synthesis of nanomaterials using plant extract: A Review. Curr. Pharm. Biotechnol. 22(13), 1794–1811 (2021).
  • Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules. 12(5), 627 (2022).
  • Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M et al. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 597, 120311 (2021).
  • Singh A, Talat M, Singh D, Srivastava ON. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res. 12, 1667–1675 (2010).
  • Pirtarighat S, Ghannadnia M, Baghshahi S. Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Mater Sci. Eng. C. Mater. Biol. Appl. 98, 250–255 (2019).
  • Song JY, Jang H-K, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 44(10), 1133–1138 (2009).
  • Osuntokun J, Onwudiwe DC, Ebenso EE. Aqueous extract of broccoli mediated synthesis of CaO nanoparticles and its application in the photocatalytic degradation of bromocrescol green. IET Nanobiotechnol. 12(7), 888–894 (2018).
  • Guo Q, Guo Q, Yuan J, Zeng J. Biosynthesis of gold nanoparticles using a kind of flavonol: dihydromyricetin. Colloids Surf A Physicochem. Eng. Asp. 441, 127–132 (2014).
  • Tamboli QY, Patange SM, Mohanta YK, Sharma R, Zakde KR. Green synthesis of cobalt ferrite nanoparticles: an emerging material for environmental and biomedical applications. J. Nanomater. 2023, 9770212 (2023).
  • Lin Q, Hong X, Zhang D, Jin H. Biosynthesis of size-controlled gold nanoparticles using M. lucida leaf extract and their penetration studies on human skin for plastic surgery applications. J. Photochem. Photobiol. Biol. 199, 111591 (2019).
  • Thanganadar Appapalam S, Panchamoorthy R. Aerva lanata mediated phytofabrication of silver nanoparticles and evaluation of their antibacterial activity against wound associated bacteria. J. Taiwan Inst. Chem. Eng. 78, 539–551 (2017).
  • Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO et al. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines. 10(11), 2792 (2022).
  • Akter M, Sikder MT, Rahman MM, Ullah A, Hossain KFB, Banik S et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16 (2018).
  • Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules 26(21), 6389 (2021).
  • Keijok WJ, Pereira RHA, Alvarez LAC, Prado AR, da Silva AR, Ribeiro J et al. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep. 9(1), 16019 (2019).
  • Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K et al. Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl. Organomet. Chem. 34(5), e5574 (2020).
  • Ambika S, Sundrarajan M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B. 146, 52–57 (2015).
  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R et al. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5(7), 4993–5003 (2015).
  • Osibe DA, Aoyagi H. Use of Catharanthus roseus cell cultures for the synthesis of metal nanoparticles. Methods Mol. Biol. 2469, 55–64 (2022).
  • Kalaiselvi A, Roopan S, Madhumitha G, Chidambaram R, Vijay G. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 135, 116–119 (2015).
  • Fahmy SA, Preis E, Bakowsky U, Azzazy HME. Platinum nanoparticles: green synthesis and biomedical applications. Molecules 25(21), 4981 (2020).
  • Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 7(1), 5178 (2017).
  • Chen H, Feng X, Gao L, Mickymaray S, Paramasivam A, Abdulaziz Alfaiz F et al. Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: attenuating the proliferation of cervical cancer cells. Artif Cells Nanomed. Biotechnol. 49(1), 240–249 (2021).
  • Pan Y, Wu Q, Qin L, Cai J, Du B. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed. Res. Int. 2014, 418624 (2014).
  • Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc. Natl Acad Sci. U S A. 110(17), 6700–6705 (2013).
  • Fageria L, Pareek V, Dilip RV, Bhargava A, Pasha SS, Laskar IR et al. Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega. 2(4), 1489–1504 (2017).
  • Krishnamoorthy V, Chidambaram A, Saranya T, Ramalingam V, Sakthivel R, Vilwanathan R. Avicennia marina engineered nanoparticles regulate p53 dependent intrinsic apoptosis signaling pathway in adenocarcinoma lung cancer. Process Biochem. 94, 349–358 (2020).
  • Jeyaraj M, Renganathan A, Sathishkumar G, Ganapathi A, Premkumar K. Biogenic metal nanoformulations induce Bax/Bcl2 and caspase mediated mitochondrial dysfunction in human breast cancer cells (MCF 7). RSC Adva. 5(3), 2159–2166 (2015).
  • Gurunathan S, Qasim M, Park C, Yoo H, Choi DY, Song H et al. Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. Int. J. Mol. Sci. 19(11), 3618 (2018).
  • Hamida RS, Albasher G, Bin-Meferij MM. Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers 12(8), 2099 (2020).
  • Lee KX, Shameli K, Nagao Y, Yew YP, Teow SY, Moeini H. Potential use of gold-silver core-shell nanoparticles derived from Garcinia mangostana peel for anticancer compound, protocatechuic acid delivery. Front. Mol. Biosci. 9, 997471 (2022).
  • Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab Z, Jahangirian H et al. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. Int. J. Nanomedicine. 16, 2515–2532 (2021).
  • Park JS, Ahn EY, Park Y. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts. Int J Nanomedicine. 12, 6895–6908 (2017).
  • Biresaw SS, Taneja P. Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals. Mater Today: Proc. 49, 3501–3509 (2022).
  • Dashtizadeh Z, Jookar Kashi F, Ashrafi M. Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Mater Today Commun. 27, 102456 (2021).
  • Pillai RR, Sreelekshmi PB, Meera AP. Enhanced biological performance of green sythesized copper oxide nanoparticles using Pimenta dioica leaf extract. Mater Today: Proc. 50, 163–172 (2022).
  • Umamaheswari A, Prabu SL, John SA, Puratchikody A. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol. Rep. 29, e00595 (2021).
  • Donga S, Chanda S. Caesalpinia crista seeds mediated green synthesis of zinc oxide nanoparticles for antibacterial, antioxidant, and anticancer activities. BioNanoScience. 12(2), 451–462 (2022).
  • Zhang H, Li T, Luo W, Peng GX, Xiong J. Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer. J. Exp. Nanosci. 17(1), 47–60 (2022).
  • Yuan C, Jiang B, Xu X, Wan Y, Wang L, Chen J. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. J. Exp. Nanosci. 17(1), 113–125 (2022).
  • Huang Y, Zhu C, Xie R, Ni M. Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J. Exp. Nanosci. 16(1), 368–381 (2021).
  • Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10(1), 9055 (2020).
  • Happy A, Soumya M, Venkat Kumar S, Rajeshkumar S, Sheba RD, Lakshmi T et al. Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochem. Biophys. Rep. 17, 208–211 (2019).
  • Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens Bio-Sens Res. 31, 100399 (2021).
  • Abdelgawad FAM, El-Hawary SS, Abd El-Kader EM, Alshehri SA, Rabeh MA, El-Mosallamy A et al. Phytochemical profiling and antiviral activity of green sustainable nanoparticles derived from Maesa indica (Roxb.) sweet against human Coronavirus 229E. Plants. 12(15), 2813 (2023).
  • Singh R, Hano C, Nath G, Sharma B. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules. 11(2), 299 (2021).
  • Mallikarjuna K, Nasif O, Ali Alharbi S, Chinni SV, Reddy LV, Reddy MRV et al. Phytogenic synthesis of Pd-Ag/rGO nanostructures using stevia leaf extract for photocatalytic H2 production and antibacterial studies. Biomolecules. 11(2), 190 (2021).
  • Chen M-N, Chan C-F, Huang S-L, Lin Y-S. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties. J. Sci. Food Agric. 99(7), 3693–3702 (2019).
  • Perveen K, Husain FM, Qais FA, Khan A, Razak S, Afsar T et al. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules. 11(2), 197 (2021).
  • Elshazly EH, Nasr A, Elnosary ME, Gouda GA, Mohamed H, Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E potential drugs from the ginkgo biloba leaves extract and its eco-friendly synthesis of silver nanoparticles. Molecules. 28(3), 1375 (2023).
  • Saleem K, Khursheed Z, Hano C, Anjum I, Anjum S. Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials. 9(12), 1749 (2019).
  • Yugay Y, Rusapetova T, Mashtalyar D, Grigorchuk V, Vasyutkina E, Kudinova O et al. Biomimetic synthesis of functional silver nanoparticles using hairy roots of Panax ginseng for wheat pathogenic fungi treatment. Colloids Surf B Biointerfaces. 207, 112031 (2021).
  • Yugay YA, Sorokina MR, Grigorchuk VP, Rusapetova TV, Silant'ev VE, Egorova AE et al. Biosynthesis of functional silver nanoparticles using callus and hairy root cultures of Aristolochia manshuriensis. J. Funct. Biomater. 14(9), 451 (2023).
  • Bawazeer S, Rauf A, Emran TB, Aljohani ASM, Alhumaydhi FA, Khan Z et al. Biogenic synthesis of silver nanoparticles using Rhazya stricta extracts and evaluation of its biological activities. J. Nanomater. 2022, 7365931 (2022).
  • Hano C, Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines. 7(5), 26 (2020).
  • Melkamu WW, Bitew LT. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) JF Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon. 7(11), e08459 (2021).
  • Khan SA, Shahid S, Lee C-S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. 10(6), 835 (2020).
  • Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 10(1), 89 (2020).
  • Alavi M, Moradi M. Different antibacterial and photocatalyst functions for herbal and bacterial synthesized silver and copper/copper oxide nanoparticles/nanocomposites: a review. Inorg Chem Commun. 142, 109590 (2022).
  • Ali J, Ali N, Wang L, Waseem H, Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods. 159, 18–25 (2019).
  • Hossain A, Hong X, Ibrahim E, Li B, Sun G, Meng Y et al. Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules. 24(12), 2303 (2019).
  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 8(1), 3943 (2018).
  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 14(7), 824 (2003).
  • Perni S, Hakala V, Prokopovich P. Biogenic synthesis of antimicrobial silver nanoparticles capped with l-cysteine. Colloids Surf A Physicochem Eng Asp. 460, 219–224 (2014).
  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 84(4), 741–749 (2009).
  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. Biotech. 4(2), 121–126 (2014).
  • Deljou A, Goudarzi S. Green Extracellular synthesis of the silver nanoparticles using Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran J Biotechnol. 14(2), 25–32 (2016).
  • Abd Ali MA, Shareef AA. Antibacterial activity of silver nanoparticles derived from extracellular Extract of Enterococcus aerogenes against dental disease bacteria isolated. Regen Eng Transl Med. (2023) doi: 10.1007/s40883-023-00304-2
  • Altinsoy BD, Şeker Karatoprak G, Ocsoy I. Extracellular directed ag NPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharm J. 27(1), 9–16 (2019).
  • Ameen F, AlYahya S, Govarthanan M, Aljahdali N, Al-Enazi N, Alsamhary K et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct. 1202, 127233 (2020).
  • Iqtedar M, Aslam M, Akhyar M, Shehzaad A, Abdullah R, Kaleem A. Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Prep. Biochem. Biotechnol. 49(2), 136–142 (2019).
  • Korbekandi H, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol. 87(7), 932–937 (2012).
  • Zada S, Ahmad A, Khan S, Iqbal A, Ahmad S, Ali H et al. Biofabrication of gold nanoparticles by Lyptolyngbya JSC-1 extract as super reducing and stabilizing agents: synthesis, characterization and antibacterial activity. Microb. Pathog. 114, 116–123 (2018).
  • Cherian T, Maity D, Rajendra Kumar RT, Balasubramani G, Ragavendran C, Yalla S et al. Green chemistry based gold nanoparticles synthesis using the marine bacterium Lysinibacillus odysseyi PBCW2 and their multitudinous activities. Nanomaterials. 12(17), 2940 (2022).
  • Manivasagan P, Alam MS, Kang K-H, Kwak M, Kim S-K. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst Eng. 38(6), 1167–1177 (2015).
  • Vairavel M, Devaraj E, Shanmugam R. An eco-friendly synthesis of Enterococcus sp. mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. Environ Sci Pollut Res. 27, 8166–8175 (2020).
  • Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN. Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci. 1(4), 310 (2019).
  • Prasad K, Jha AK, Kulkarni A. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett. 2, 248–250 (2007).
  • Al-Kordy HM, Sabry SA, Mabrouk ME. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp. W7. Sci rep. 11(1), 10924 (2021).
  • Busi S, Rajkumari J, Pattnaik S, Parasuraman P, Hnamte S. Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. J Microbiol Biotechnol Food Sci. 5(5), 407 (2016).
  • Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B Biol. 140, 194–204 (2014).
  • Eltarahony M, Zaki S, Abd-El-Haleem D. Concurrent synthesis of zero-and one-dimensional, spherical, rod-, needle-, and wire-shaped CuO nanoparticles by Proteus mirabilis 10B. J. Nanomater. 2018, 1–14 (2018).
  • Talebian S, Shahnavaz B, Nejabat M, Abolhassani Y, Rassouli FB. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Front Bioeng Biotechnol. 11, 1140010 (2023).
  • Abdel-Aziz MM, Emam TM, Elsherbiny EA. Bioactivity of magnesium oxide nanoparticles synthesized from cell filtrate of endobacterium Burkholderia rinojensis against Fusarium oxysporum. Mater Sci Eng. C. 109, 110617 (2020).
  • Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol. 270, 1–11 (2018).
  • Allaker RP, Memarzadeh K. Nanoparticles and the control of oral infections. Int. J Antimicrob Agents. 43(2), 95–104 (2014).
  • Baymiller M, Huang F, Rogelj S. Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters (2017) doi: 10.19185/matters.201705000007
  • Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 20(2), 449 (2019).
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275(1), 177–182 (2004).
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007).
  • Lee HJ, Lee SG, Oh EJ, Chung HY, Han SI, Kim EJ et al. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion. Colloids Surf B. 88(1), 505–511 (2011).
  • Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C et al. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv. 9(50), 29293–29299 (2019).
  • Esmail R, Afshar A, Morteza M, Abolfazl A, Akhondi E. Synthesis of silver nanoparticles with high efficiency and stability by culture supernatant of Bacillus ROM6 isolated from Zarshouran gold mine and evaluating its antibacterial effects. BMC Microbiol. 22(1), 97 (2022).
  • Saleh MN, Alwan SK. Bio-synthesis of silver nanoparticles from bacteria Klebsiella pneumonia: their characterization and antibacterial studies. J Phys Conf Ser. 1664(1), 012115 (2020).
  • Matei A, Matei S, Matei G-M, Cogălniceanu G, Cornea CP. Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. Eurobiotech J. 4(2), 97–103 (2020).
  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomater. 10(10), 4023–4042 (2014).
  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 21(7), 836 (2016).
  • Ramasamy M, Lee JH, Lee J. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J. Biomater. Appl. 31(3), 366–378 (2016).
  • Bing W, Sun H, Wang F, Song Y, Ren J. Hydrogen-producing hyperthermophilic bacteria synthesized size-controllable fine gold nanoparticles with excellence for eradicating biofilm and antibacterial applications. J Mater Chem B. 6(28), 4602–4609 (2018).
  • Patil MP, Kang M-J, Niyonizigiye I, Singh A, Kim J-O, Seo YB et al. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B. 183, 110455 (2019).
  • Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NA. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Fact. 19(1), 10 (2020).
  • Majeed S, Danish M, Mohamad Ibrahim MN, Sekeri SH, Ansari MT, Nanda A et al. Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J Clust Sci. 32(4), 1083–1094 (2021).
  • Kianpour S, Ebrahiminezhad A, Deyhimi M, Negahdaripour M, Raee MJ, Mohkam M et al. Structural characterization of polysaccharide-coated iron oxide nanoparticles produced by Staphylococcus warneri, isolated from a thermal spring. J Basic Microbiol. 59(6), 569–578 (2019).
  • Fani M, Ghandehari F, Rezaee M. Biosynthesis of iron oxide nanoparticles by cytoplasmic extract of bacteria lactobacillus fermentum. J Med Chem Sci. 1(2), 28–30 (2018).
  • Rajeswaran S, Somasundaram Thirugnanasambandan S, Dewangan NK, Moorthy RK, Kandasamy S, Vilwanathan R. Multifarious pharmacological applications of green routed eco-friendly iron nanoparticles synthesized by Streptomyces Sp.(SRT12). Biol Trace Elem Res. 194, 273–283 (2020).
  • Shunmugam R, Renukadevi Balusamy S, Kumar V, Menon S, Lakshmi T, Perumalsamy H. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J King Saud Univ Sci. 33(1), 101260 (2021).
  • Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ et al. Biosynthesis and characterization of silver nanoparticles by Aspergillus Species. Biomed Res Int. 2016, 5435397 (2016).
  • Durán N, Marcato PD, Alves OL, Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology. 3, 8 (2005).
  • Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 29(3), 439–445 (2007).
  • Hietzschold S, Walter A, Davis C, Taylor A, Sepunaru L. Does nitrate reductase play a role in silver nanoparticle synthesis? evidence for nadph as the sole reducing agent. ACS Sustain Chem Eng. 7(9), 8070–8076 (2019).
  • Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam KA et al. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. J Fungi. 7(2), 139 (2021).
  • Halkai KR, Mudda JA, Shivanna V, Patil V, Rathod V, Halkai R. Cytotoxicity evaluation of fungal-derived silver nanoparticles on human gingival fibroblast cell line: an in vitro study. J Conserv Dent. 22(2), 160–163 (2019).
  • Halkai KR, Halkai R, Mudda JA, Shivanna V, Rathod V. Antibiofilm efficacy of biosynthesized silver nanoparticles against endodontic-periodontal pathogens: an in vitro study. J Conserv Dent. 21(6), 662–666 (2018).
  • Alves MF, Paschoal ACC, Klimeck TDMF, Kuligovski C, Marcon BH, de Aguiar AM et al. Biological synthesis of low cytotoxicity silver nanoparticles (AgNPs) by the fungus chaetomium thermophilum—sustainable nanotechnology. J Fungi. 8(6), 605 (2022).
  • Kobashigawa JM, Robles CA, Martínez Ricci ML, Carmarán CC. Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J Biol Sci. 26(7), 1331–1337 (2019).
  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC et al. Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. 12(6), 857–863 (2018).
  • Ameen F, Al-Homaidan AA, Al-Sabri A, Almansob A, AlNAdhari S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl Nanosci. 13(1), 623–631 (2023).
  • Raman J, Reddy GR, Lakshmanan H, Selvaraj V, Gajendran B, Nanjian R et al. Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Proc Biochem. 50(1), 140–147 (2015).
  • Nagajyothi PC, Sreekanth TVM, Lee J-I, Lee KD. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B Biol. 130, 299–304 (2014).
  • Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol. Res. 110, 175–184 (2012).
  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp. 497, 280–285 (2016).
  • Vala AK. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain. 34(1), 194–197 (2015).
  • Kitching M, Choudhary P, Inguva S, Guo Y, Ramani M, Das SK et al. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzyme Microb. Technol. 95, 76–84 (2016).
  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 91, 23–29 (2012).
  • Peiris M, Gunasekara T, Jayaweera P, Fernando S. TiO2 nanoparticles from Baker's yeast: a potent antimicrobial. J Microbial Biotechnol. 28(10), 1664–1670 (2018).
  • Tarafdar A, Raliya R, Wang W-N, Biswas P, Tarafdar J. Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med. 5(9), 943–949 (2013).
  • Ranjani VA, Rani GT, Sowjanya M, Preethi M, Srinivas M, Nikhil M. Yeast mediated synthesis of iron oxide nano particles: its characterization and evaluation of antibacterial activity. Int Res J Pharm Med sci. 5(5), 12–16 (2022).
  • Ali A, Elewa N, Elbostany N, Shetaia Y, Swilm M. Antimicrobial potentiality of green synthesized iron oxide nanoparticles by Penicillium roqueforti. Egypt. J Basic Appl Sci. 59(1), 29–43 (2021).
  • Ceroni D, Grumetz C, Desvachez O, Pusateri S, Dunand P, Samara E. From prevention of pin-tract infection to treatment of osteomyelitis during paediatric external fixation. J Child Orthop. 10(6), 605–612 (2016).
  • Qu H, Knabe C, Radin S, Garino J, Ducheyne P. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection. Biomaterials 62, 95–105 (2015).
  • Liang X, Zhang S, Gadd GM, McGrath J, Rooney DW, Zhao Q. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. Regen Biomater. 9(1), rbac013 (2022).
  • Skanda S, Bharadwaj PSJ, Datta Darshan VM, Sivaramakrishnan V, Vijayakumar BS. Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. J. Microbiol. Meth. 199, 106517 (2022).
  • Majeed S, Danish M, Norazmi FSB. Fungal derived zinc oxide nanoparticles and their antibacterial and anticancer activities against human Alveoli lung cancer A-549 cell line. Adv Sci Eng Med. 10(6), 551–556 (2018).
  • Gao Y, Arokia Vijaya Anand M, Ramachandran V, Karthikkumar V, Shalini V, Vijayalakshmi S et al. Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity. J Clust Sci. 30(4), 937–946 (2019).
  • Riddin TL, Gericke M, Whiteley CG. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology. 17(14), 3482–3489 (2006).
  • Gupta K, Chundawat TS. Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater Res Express. 6(10), 1050d6 (2019).
  • Subramaniyan SA, Sheet S, Vinothkannan M, Yoo DJ, Lee YS, Belal SA et al. One-Pot Facile Synthesis of Pt Nanoparticles Using Cultural Filtrate of Microgravity Simulated Grown P. chrysogenum and Their Activity on Bacteria and Cancer Cells. J Nanosci Nanotechnol. 18(5), 3110–3125 (2018).
  • Castro-Longoria E, Moreno-Velázquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol. 22(7), 1000–1004 (2012).
  • Sarkar J, Acharya K. Alternaria alternata culture filtrate mediated bioreduction of chloroplatinate to platinum nanoparticles. Synth React Inorg met. 47, 00–00 (2016).
  • Nanda A, Bhat M, Nayak BK. Evaluation of Bactericidal Activity of Biologically synthesised silver nanoparticles from Candida albicans in combination with ciprofloxacin. Mater Today. 2, 4395–4401 (2015).
  • Ibrahim HMM, Hassan MS. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr Polym. 151, 841–850 (2016).
  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A et al. Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi. Nanomaterials 8(8), 586 (2018).
  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 4303–4314 (2013).
  • Sundaravadivelan C, Padmanabhan MN. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res. 21(6), 4624–4633 (2014).
  • Banu AN, Balasubramanian C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol. Res. 113, 3843–3851 (2014).
  • Lan Chi NT, Veeraragavan GR, Brindhadevi K, Chinnathambi A, Salmen SH, Alharbi SA et al. Fungi fabrication, characterization, and anticancer activity of silver nanoparticles using metals resistant Aspergillus niger. Environ. Res. 208, 112721 (2022).
  • Nassar A-RA, Eid AM, Atta HM, El Naghy WS, Fouda A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep. 13(1), 9054 (2023).
  • Fouda A, Hassan SE-D, Eid AM, Abdel-Rahman MA, Hamza MF. Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep. 12(1), 11834 (2022).
  • Mistry H, Thakor R, Bariya H. Biogenesis and characterization of proficient silver nanoparticles employing marine procured fungi Hamigera pallida and assessment of their antioxidative, antimicrobial and anticancer potency. Biotechnol Lett. 44(9), 1097–1107 (2022).
  • Husseiny SM, Salah TA, Anter HA. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef univ j basic appl sci. 4(3), 225–231 (2015).
  • Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W et al. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 34(19), 4632–4642 (2013).
  • Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K. Fabrication of virus metal hybrid nanomaterials: an ideal reference for bio semiconductor. Arab J Chem. 13(1), 2750–2765 (2020).
  • Love AJ, Makarov VV, Sinitsyna OV, Shaw J, Yaminsky IV, Kalinina NO et al. A Genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front Plant Sci. 6, 984 (2015).
  • Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B et al. Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles. Nano Lett. 4(5), 867–870 (2004).
  • Cao J, Guenther RH, Sit TL, Opperman CH, Lommel SA, Willoughby JA. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small. 10(24), 5126–5136 (2014).
  • Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods. 163, 105656 (2019).
  • Behera M, Behera PR, Bhuyan PP, Singh L, Pradhan B. Algal nanoparticles and their antibacterial activity: current research status and future prospectives. Drugs and Drug Candidates. 2(3), 554–570 (2023).
  • Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G et al. Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine. Bioengineering 16, 7(4), 129 (2020).
  • Aboelfetoh EF, El-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess. 189(7), 349 (2017).
  • Kumar B, Smita K, Sánchez E, Guerra S, Cumbal L. Ecofriendly ultrasound-assisted rapid synthesis of gold nanoparticles using Calothrix algae. Adv Nat Sci: Nanosci Nanotechnol. 7(2), 025013 (2016).
  • Shanmugam R, Kannan C, Gurusamy A. Synthesis and Characterization of Antimicrobial Silver Nanoparticles Using Marine Brown Seaweed Padina tetrastromatica. Drug Invent Today. 4(10), 511–513 (2012).
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 12(8), 1823–1838 (2019).
  • Ramakritinan C, Kaarunya E, Shankar S, Kumaraguru A. Antibacterial effects of Ag, Au and bimetallic (Ag-Au) nanoparticles synthesized from red algae. Solid State Phenom. 201, 211–230 (2013).
  • Chaudhary R, Nawaz K, Khan AK et al. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules. 10(11), 1498 (2020).
  • Rao MD, Pennathur G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater Res Bull. 85, 64–73 (2017).
  • Fouda A, Eid AM, Abdelkareem A, Said HA, El-Belely EF, Alkhalifah DHM et al. Phyco-synthesized zinc oxide nanoparticles using marine macroalgae, Ulva fasciata Delile, characterization, antibacterial activity, photocatalysis, and tanning wastewater treatment. Catalysts. 12(7), 756 (2022).
  • Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Subramaniam J, Chandramohan B et al. One pot synthesis of silver nanocrystals using the seaweed Gracilaria edulis: biophysical characterization and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus. J Appl Phycol. 29, 649–659 (2017).
  • Sampath S, Madhavan Y, Muralidharan M, Sunderam V, Lawrance AV, Muthupandian S. A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol. 360, 92–109 (2022).
  • AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ. Res. 194, 110672 (2021).
  • Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci. 5, 703–709 (2015).
  • Shen P, Yin Z, Qu G, Wang C. 11 - Fucoidan and Its Health Benefits. In: Bioactive Seaweeds for Food Applications. Qin Y ( Ed.). 223–238 Academic Press, London, UK (2018).
  • Khalid M, Khalid N, Ahmed I, Hanif R, Ismail M, Janjua H. Comparative studies of three novel fresh water microalgae strains for synthesis of silver nanoparticles: insights of characterization, antibacterial, cytotoxicity and antiviral activities. J Appl Phycol. 29(4), 1851–1863 (2017).
  • Venkatesan J, Kim SK, Shim MS. Antimicrobial, Antioxidant, and Anticancer Activities of Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava. Nanomaterials 6, 6(12), (2016).
  • Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45(7), 1065–1071 (2010).
  • Handayani W, Ningrum AS, Imawan C. The Role of pH in Synthesis Silver Nanoparticles Using Pometia pinnata (Matoa) Leaves Extract as Bioreductor. J Phys Conf Ser. 1428(1), 012021 (2020).
  • Ghaemi M, Gholamipour S. Controllable Synthesis and Characterization of Silver Nanoparticles Using Sargassum Angostifolium. Iran J Chem Chem Eng. 36(1), 1–10 (2017).
  • Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry. 2(4), 141–147 (2012).
  • Prathna T, Chandrasekaran N, Raichur AM, Mukherjee A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp. 377(1–3), 212–216 (2011).
  • Karade VC, Dongale TD, Sahoo SC, Kollu P, Chougale AD, Patil PS et al. Effect of reaction time on structural and magnetic properties of green-synthesized magnetic nanoparticles. J Phys Chem Solids. 120, 161–166 (2018).
  • Rai A, Singh A, Ahmad A, Sastry M. Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir. 22(2), 736–741 (2006).
  • Stavinskaya O, Laguta I, Fesenko T, Krumova M. Effect of Temperature on Green Synthesis of Silver Nanoparticles Using Vitex Agnus-castus Extract. Chem J Mold. 14, 117–121 (2019).
  • Gupta M, Tomar RS, Mishra RK. Factors affecting biosynthesis of green nanoparticles. Our Heritage. 68(30), 10530–10555 (2020).
  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 22(2), 577–583 (2006).
  • Guilger-Casagrande M, de Lima R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 7, 287 (2019).
  • Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci U S A. 111(43), 15344–15349 (2014).
  • Mishra AR, Zheng J, Tang X, Goering PL. Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in HepG2 cells is size-dependent. Toxicol Sci. 150(2), 473–487 (2016).
  • Abdelmoneim HM, Taha TH, Elnouby MS, AbuShady HM. Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microb Cell Fact. 21(1), 277 (2022).
  • El-Bendary MA, Afifi SS, Moharam ME, Elsoud MMA, Gawdat NA. Optimization of Bacillus subtilis NRC1 growth conditions using response surface methodology for sustainable biosynthesis of gold nanoparticles. Sci Rep. 12(1), 20882 (2022).
  • Safaei M, Mozaffari HR, Moradpoor H, Imani MM, Sharifi R, Golshah A. Optimization of green synthesis of selenium nanoparticles and evaluation of their antifungal activity against oral Candida albicans infection. Adv Mater Sci Eng. 2022, 1376998 (2022).
  • Ma L, Su W, Liu JX, Zeng XX, Huang Z, Li W et al. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C Mater Biol Appl. 77, 963–971 (2017).
  • Krishnamoorthi R, Bharathakumar S, Malaikozhundan B, Mahalingam PU. Mycofabrication of gold nanoparticles: optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatal Agric Biotechnol. 35, 102107 (2021).
  • Liaqat N, Jahan N, Khalil Ur R, Anwar T, Qureshi H. Green synthesized silver nanoparticles: optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem. 10, 952006 (2021).
  • Dube P, Meyer S, Madiehe A, Meyer M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. Nanotechnology. 31(50), 505607 (2020).
  • Morgan RN, Ali AA, Alshahrani MY, Aboshanab KM. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms. 11(10), 2444 (2023).
  • Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorg Nano Met. 51(10), 1386–1395 (2020).
  • Khalil MA, El-Shanshoury AER, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J et al. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Front Microbiol. 12, 705673 (2021).
  • Hamed AA, Kabary H, Khedr M, Emam AN. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RSC adv. 10(17), 10361–10367 (2020).
  • Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Emam AN, Farahat MG. Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on Aspergillus-derived mycotoxins. Microorganisms. 11(4), 1006 (2023).
  • Rosyidah A, Weeranantanapan O, Chudapongse N, Limphirat W, Nantapong N. Streptomyces chiangmaiensis SSUT88A mediated green synthesis of silver nanoparticles: characterization and evaluation of antibacterial action against clinical drug-resistant strains. RSC Adv. 12(7), 4336–4345 (2022).
  • Zhao H, Maruthupandy M, Al-mekhlafi FA, Chackaravarthi G, Ramachandran G, Chelliah CK. Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells. J King Saud Univ Sci. 34(3), 101866 (2022).
  • El-Housseiny GS, Ibrahim AA, Yassien MA, Aboshanab KM. Production and statistical optimization of Paromomycin by Streptomyces rimosus NRRL 2455 in solid state fermentation. BMC Microbiol. 21(1), 34 (2021).
  • Ibrahim AA, El-Housseiny GS, Aboshanab KM, Yassien MA, Hassouna NA. Paromomycin production from Streptomyces rimosus NRRL 2455: statistical optimization and new synergistic antibiotic combinations against multidrug resistant pathogens. BMC Microbiol. 19(1), 18 (2019).
  • El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate, an antifungal metabolite of Alcaligenes faecalis strain MT332429 optimized through response surface methodology. Appl. Microbiol. Biotechnol. 104(24), 10755–10768 (2020).
  • El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH. Optimization of Rhamnolipid Production by P. aeruginosa Isolate P6. J Surfactants Deterg. 19(5), 943–955 (2016).
  • El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. AMB Express. 10(1), 201 (2020).
  • Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor M, Akhir F et al. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Sci Rep 10(1), 7813 (2020).
  • Della-Flora IK, de Andrade CJ. Biosynthesis of metallic nanoparticles by bacterial cell-free extract. Nanoscale. 15(34), 13886–13908 (2023).
  • Sperandio FF, Huang YY, Hamblin MR. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov. 8(2), 108–120 (2013).
  • Monmaturapoj N, Sri-On A, Klinsukhon W, Boonnak K, Prahsarn C. Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite. Mater Sci Eng C Mater Biol Appl. 92, 96–102 (2018).
  • Ondeck C, Habib A, Ohodnicki P, Miller K, Sawyer C, Chaudhary P et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys 105(7), 07B324 (2009).
  • Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater. 9(9), e1901058 (2020).
  • Cruz MM, Ferreira LP, Ramos J, Mendo SG, Alves AF, Godinho M et al. Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J Alloys Compd. 703, 370–380 (2017).
  • Kobylinska N, Klymchuk D, Khaynakova O, Duplij V, Matvieieva N. Morphology-Controlled Green Synthesis of Magnetic Nanoparticles Using Extracts of ‘Hairy’ Roots: Environmental Application and Toxicity Evaluation. Nanomaterials. 12(23), 4231 (2022).