200
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Molecular dynamics study to improve the substrate adsorption of Saccharomycopsis fibuligera R64 alpha-amylase by designing a new surface binding site

, , , , &
Pages 1-13 | Published online: 07 Jun 2019

References

  • Cockburn D, Nielsen MM, Christiansen C, et al. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int J Biol Macromol. 2015;75:338–345. doi:10.1016/j.ijbiomac.2015.01.05425661878
  • Davies GJ, Gloster TM, Henrissat B. Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol. 2005;15:637–645. doi:10.1016/j.sbi.2005.10.00816263268
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. 2004;781:769–781. doi:10.1042/BJ20040892
  • Barchiesi J, Hedin N, Casati DFG, Ballicora MA, Busi MV. Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Res Notes. 2015;8:1–12. doi:10.1186/s13104-015-1598-625645429
  • Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol. 2013;23:1–9. doi:10.1016/j.sbi.2013.05.00523374590
  • Cuyvers S, Dornez E, Delcour JA, Courtin CM. Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit Rev Biotechnol. 2012;32:93–107. doi:10.3109/07388551.2011.56153721711082
  • Ye Z, Miyake H, Tatsumi M, Nishimura S, Nitta Y. Two additional carbohydrate-binding sites of β-amylase from Bacillus cereus var. mycoides are involved in hydrolysis and raw starch-binding. J Biochem. 2004;135(3):355–363. doi:10.1093/jb/mvh04315113834
  • Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 2006;273:2161–2171. doi:10.1111/j.1742-4658.2006.05230.x16649993
  • Nielsen MM, Bozonnet S, Seo E-S, et al. Two secondary carbohydrate binding sites on the surface of barley α-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry. 2009;48(32):7686–7697. doi:10.1021/bi900795a19606835
  • Janecek S, Balaz S. α-Amylases and approaches leading to their enhanced stability. FEBS Lett. 1992;304(1):1–3.1618293
  • Hamilton LM, Kelly CT, Fogarty WM. Purification and properties of the raw starch-degrading α-amylase of Bacillus sp. IMD 434. Biotechnol Lett. 1999;21:111–115. doi:10.1023/A:1005413816101
  • Singh H, Soni SK. Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem. 2001;37:453–459. doi:10.1016/S0032-9592(01)00238-2
  • Sun H, Zhao P, Ge X, et al. Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol. 2010;160(4):988–1003. doi:10.1007/s12010-009-8579-y19277485
  • Kelly CT, Mctigue MA, Doyle EM, Fogarty WM. The raw starch-degrading alkaline amylase of Bacillus sp IMD. J Ind Microbiol. 1995;15:9–10. doi:10.1007/BF01569973
  • Shiau J, Hung H, Jeang C. Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis. Appl Environ Microbiol. 2003;69(4):2383–2385. doi:10.1128/AEM.69.4.2383-2385.200312676725
  • Cockburn D, Wilkens C, Ruzanski C, et al. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 – a mini-review. Biologia (Bratisl). 2014;69:705–712. doi:10.2478/s11756-014-0373-9
  • Ismaya WT, Hasan K, Subroto T, Natalia D, Soemitro S.Chromatography as the major tool in the identification and the structure-function relationship study of amylolytic enzymes from Saccharomycopsis fibuligera R64 In: de Azevedo Calderon, editor. Chromatography - The most versatile method of chemical analysis. Leonardo de Azevedo Calderon. London: Intech Open; 2012:271-294. doi:10.5772/51325.
  • Hasan K, Ismaya WT, Kardi I, et al. Proteolysis of α-amylase from Saccharomycopsis fibuligera: characterization of digestion products. Biologia. 2008;63(6):1044–1050. doi:10.2478/s11756-008-0167-z
  • Bisgard-Frantzen H, Pedersen S, Svendsen; Novozymes AS. A Fungamyl-like α-amylase variants. European Patent EP 1230351A1. August 14, 2002.
  • Zagar VA, Dijkstra BW. Monoclinic crystal form of Aspergillus niger α-amylase in complex with maltose at 1.8 Å resolution. Protein Struct Commun. 2006;62:716–721. doi:10.1107/S1744309106024729
  • Fiser A, Šali A. MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461–491. doi:10.1016/S0076-6879(03)74020-814696385
  • Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi:10.1006/jmbi.1993.16268254673
  • Yusuf M, Baroroh U, Hasan K, Diana S, Ishmayana S, Subroto T. Computational model of the effect of a surface-binding site on the Saccharomycopsis fibuligera R64 α-amylase to the substrate adsorption. Bioinform Biol Insights. 2017;11:1–8. doi:10.1177/1177932217738764
  • Laskowski R, MacArthur M, Moss D, Thornton J. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystalogr. 1993;26(2):283–291. doi:10.1107/S0021889892009944
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. doi:10.1093/nar/gkm29017517781
  • Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23:1623–1641. doi:10.1002/jcc.1012812395429
  • Case DA, Darden T, Iii TEC, et al. Amber14. San Francisco: University of California; 2014.
  • Miller BR, Mcgee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8:3314–3321. doi:10.1021/ct300418h26605738
  • Samaeidaryan S. Characterization of surface binding sites in glycoside hydrolases: a computational study. J Mol Recognit. 2017;e2624. doi:10.1002/jmr.2624
  • Ismaya WT, Hasan K, Kardi I, et al. Chemical modification of Saccharomycopsis fibuligera R64 α-amylase to improve its stability against thermal, chelator, and proteolytic inactivation. Appl Biochem Biotechnol. 2013;170:44–57. doi:10.1007/s12010-013-0164-823468006
  • Yanez E, Carmona TA, Tiemblo M, Jime A, Ya E. Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Biochem J. 1998;71:65–71. doi:10.1042/bj3290065
  • Eriksen SH, Jensen B, Olsen J. Effect of N-linked glycosylation on secretion, activity, and stability of α-amylase from Aspergillus oryzae. Curr Microbiol. 1998;37:117–122.9662611
  • Koropatkin NM, Smith TJ. SusG: a unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules. Struct Des. 2010;18(2):200–215. doi:10.1016/j.str.2009.12.010
  • Amalia R, Ismaya WT, Puspasari F, et al. Heterologous expression of α-amylase from Saccharomycopsis fibuligera R64 and its Tyr401Trp mutant in Pichia pastoris. Microbiol Indones. 2016;10(1):23–29. doi:10.5454/mi.10.1.4
  • Natalia D, Vidilaseris K, Ismaya WT, et al. Effect of introducing a disulphide bond between the A and C domains on the activity and stability of Saccharomycopsis fibuligera R64 α-amylase. J Biotechnol. 2014;195:8–14.